48 resultados para Z350
Resumo:
Objective: This study evaluated the influence of different surface treatments on the resin bond strength/light-cured characterizing materials (LCCMs), using the intrinsic characterization technique. The intrinsic technique is characterized by the use of LCCMs between the increments of resin composite (resin/thin film of LCCM/external layer of resin covering the LCCM).Materials and Methods: Using a silicone matrix, 240 blocks of composite (Z350/3M ESPE) were fabricated. The surfaces received different surface treatments, totaling four groups (n=60): Group C (control group), no surface treatment was used; Group PA, 37% phosphoric acid for one minute and washing the surface for two minutes; Group RD, roughening with diamond tip; and Group AO, aluminum oxide. Each group was divided into four subgroups (n=15), according to the LCCMs used: Subgroup WT, White Tetric Color pigment (Ivoclar/Vivadent) LCCM; Subgroup BT, Black Tetric Color pigment (Ivoclar/Vivadent) LCCM; Subgroup WK, White Kolor Plus pigment (Kerr) LCCM; Subgroup BK, Brown Kolor Plus pigment (Kerr) LCCM. All materials were used according to the manufacturer's instructions. After this, block composites were fabricated over the LCCMs. Specimens were sectioned and submitted to microtensile testing to evaluate the bond strength at the interface. Data were submitted to two-way analysis of variance (ANOVA) (surface treatment and LCCMs) and Tukey tests.Results: ANOVA presented a value of p<0.05. The mean values (+/- SD) for the factor surface treatment were as follows: Group C, 30.05 MPa (+/- 5.88)a; Group PA, 23.46 MPa (+/- 5.45)b; Group RD, 21.39 MPa (+/- 6.36)b; Group AO, 15.05 MPa (+/- 4.57)c. Groups followed by the same letters do not present significant statistical differences. The control group presented significantly higher bond strength values than the other groups. The group that received surface treatment with aluminum oxide presented significantly lower bond strength values than the other groups.Conclusion: Surface treatments of composite with phosphoric acid, diamond tip, and aluminum oxide significantly diminished the bond strength between composite and the LCCMs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the effect of surface treatment with Er:YAG and Nd:YAG laser on resin composite bond strength to recently bleached dentin. Material and Methods: In this study 120 bovine incisors were used and distributed into two groups: Group C: without bleaching treatment; Group B: with bleaching treatment (35% hydrogen peroxide). Each group was divided into three subgroups: Subgroup N: without laser treatment; Subgroup Nd: irradiation with Nd:YAG laser; Subgroup Er: irradiation with Er:YAG laser. Next, the adhesive system (Adper Single Bond 2) was applied and composite buildups were constructed with Z350 composite. The teeth were sectioned to obtain dentin-resin sticks (1x1mm) and analyzed by microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. Results: The results showed that the bond strength values in the bleached control group (16.17 MPa) presented no significant difference in comparison with the group bleached and irradiated with Er:YAG laser (14.69 MPa). The non bleached control group (26.79 MPa) presented significant difference in bond strength when compared with the non bleached group irradiated with Er:YAG laser (22.82 MPa) and with the group treated by bleaching and irradiation with Nd:YAG laser (28,792 MPa). The group without bleaching treatment and irradiated with Nd:YAG (36.1 MPa) presented a significant increase in bond strength in comparison with the other groups. Conclusion: The use of Nd:YAG laser on bleached specimens was able of completely reversing the immediate effects of bleaching, obtaining bond strength values similar to those of the control group
Resumo:
To compare the abrasion wear resistance and superficial roughness of different glass ionomer cements used as restorative materials, focusing on a new nanoparticulate material. Material and Method: Three glass ionomer cements were evaluated: Ketac Molar, Ketac N100 and Vitremer (3M ESPE, St. Paul, MN, USA), as well as the Filtek Z350 (3M ESPE, St. Paul, MN, USA). For each material were fabricated circular specimens (n=12), respecting the handling mode specified by the manufacturer, which were polished with sandpaper disks of decreasing grit. The wear was determined by the amount of mass (M) lost after brushing (10,000 cycles) and the roughness (Ra) using a surface roughness tester. The difference between the Minitial and Mfinal (ΔM) as well as beroughness of aesthetic restorative materials: an in vitro comparison. SADJ. 2001; 56(7): 316-20. 11. Yip HK, Peng D, Smales RJ. Effects of APF gel on the physical structure of compomers and glass ionomer cements. Oper. Dent. 2001; 26(3): 231-8. 12. Ma T, Johnson GH, Gordon GE. Effects of chemical disinfectants on the surface characteristics and color of denture resins. J Prosthet Dent 1997; 77(2): 197-204. 13. International organization for standardization. Technical specification 14569-1. Dental Materials – guidance on testing of wear resistance – PART I: wear by tooth brushing. Switzerland: ISO; 1999. 14. Bollen CML, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater.1997; 13(4): 258-9. 15. Kielbassa AM, Gillmann C, Zantner H, Meyer-Lueckel H, Hellwig E, Schulte-Mönting J. Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Res. 2005; 39(5): 380-6. 16. Tanoue N, Matsumara H, Atsuta M. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. J Prosthet Dent. 2000; 84(1): 93-7. 17. Heath JR, Wilson HJ. Abrasion of restorative materials by toothpaste. J Oral Rehabil. 1976; 3(2): 121-38. 18. Frazier KB, Rueggeberg FA, Mettenburg DJ. Comparasion of wearresistance of class V restorative materials. J Esthet Dent. 1998; 10(6): 309-14. 19. Momoi Y, Hirosakil K, Kohmol A, McCabe JF. In vitro toothebrushdentifrrice abrasion of resin-modified glass ionomers. Dent Mater. 1997; 13(2): 82-8. 20. Turssi CP, Magalhães CS, Serra MC, Rodrigues Jr.AL. Surface roughness assessment of resin-based materials during brushing preceded by pHcycling simulations. Oper Dent. 2001; 26(6): 576-84. 21. Wang L, Cefaly DF, Dos Santos JL, Dos Santos JR, Lauris JR, Mondelli RF, et al. In vitro interactions between lactic acid solution and art glassionomer cements. J Appl Oral Sci. 2009; 17(4): 274-9. 22. Carvalho FG, Fucio SB, Paula AB, Correr GM, Sinhoreti MA, PuppinRontani RM. Child toothbrush abrasion effect on ionomeric materials. J Dent Child (Chic). 2008; 75(2): 112-6. 23. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, et al. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater. 2009; 25(11): 1347-57. tween Rainitial and Rafinal (ΔRa) were also used for statistical analysis (α=0.05). Results: Except for the composite, significant loss of mass was observed for all glass ionomer cements and the ΔM was comparable for all of them. Significant increase in roughness was observed only for Vitremer and Ketac N100. At the end of the brushing cycle, just Vitremer presented surface roughness greater than the composite resin. Conclusion: All glass ionomer cements showed significant weight loss after 10,000 cycles of brushing. However, only Vitremer showed an increase of roughness greater than the Z350 resin, while the nanoparticulate cement Ketac N100 showed a smooth surface comparable to the composite.
Resumo:
This study assessed the surface microhardness of compound resins cured by different light sources. Methods Three micro hybrid (Vit-l-escence, Amelogen Plus, Opallis) and one nanoparticle (Filtek Z350, 3M ESPETM Dental Products, St. Paul, USA) compound resins were selected. The resins were polymerized by a halogen light unit (Ultralux, Dabi Atlante, Ribeirão Preto, Brasil) with two tips, one semi-guided made of glass and another of painted acrylic and a LED-based source (UltraLume 2, Ultradent®, South Jordan, USA). Specimens constructed from a circular aluminum matrix were photopolymerized for 40 second after they received the compound resin and stored dry for 24 hours. After this period, a Vickers surface microhardness assay was performed, measuring the top (hardness 1) and base (hardness 2) surfaces four times each. Variance analyses were complemented by Newman-Keuls method, with significance set at 5%. Results The Opallis (FGM, Santa Catarina, Brasil) resin subjected to UltraLume 2 (Ultradent®, South Jordan, USA) obtained the lowest mean hardness values for the top surface. The Vit-l-escence (Ultradent®, South Jordan, USA) compound cured by Led UltraLume 2 (Ultradent®, South Jordan, USA) and by Ultralux PCP (Dabi Atlante, Ribeirão Preto, Brasil) halogen light obtained the highest mean hardness, followed by the Filtek Z350 (3M ESPETM Dental Products, St. Paul, USA) resin subjected to UltraLume 2 (Ultradent® South Jordan, USA). The Opallis (FGM, Santa Catarina, Brasil) resin cured by LED UltraLume 2 (Ultradent®, South Jordan, USA) also obtained the lowest mean hardness for the base surface and the Vit-L-Escence (Ultradent®, South Jordan, USA) resin obtained the highest value, followed by Amelogen Plus, when cured by Ultralux (Dabi Atlante, Ribeirão Preto, Brasil) using the semi-guided tip. Conclusion The polymerization and, consequently, the microhardness achieved by the LED unit was equivalent to those achieved by conventional halogen units for three of the four composites tested.
Resumo:
This study aimed to evaluate the effect of Er:YAG (L) and diamond drills (DD) on: 1) the microshear bond strength (MPa); 2) the adhesive interface of two-step (TS) – Adper Scotchbond Multipurpose and one-step (OS) adhesives – Adper EasyOne, both from 3M ESPE. Material and methods: According to the preparation condition and adhesives, the samples were divided into four groups: DD_TS (control); DD_OS; L_TS and L_OS. 60 bovine incisors were randomly divided into experimental and groups: 40 for microshear bond strength (n = 10) and 20 for the adhesive interface morphology [6 to measure the thickness of the hybrid layer (HL) and length of tags (t) by CLSM (n = 3); 12 to the adhesive interface morphology by SEM (n = 3) and 2 to illustrate the effect of the instruments on dentine by SEM (n = 1)]. To conduct the microshear bond strength test, four cylinders (0.7 mm in diameter and 1 mm in height with area of adhesion of 0.38 mm) were constructed with resin composite (Filtek Z350 XT – 3M ESPE) on each dentin surface treated by either L or DD and after adhesives application. Microshear bond strength was performed in universal testing machine (EMIC 2000) with load cell of 500 kgf and a crosshead speed of 0.5 mm / min. Adhesive interface was characterized by thickness of hybrid layer (HL) and length of tags (t) in nm, with the aid of UTHSCSA ImageTool software. Results: Microshear bond strength values were: L_TS 34.10 ± 19.07, DD_TS 24.26 ± 9.35, L_OS 33.18 ± 12.46, DD_OS 21.24 ± 13.96. Two-way ANOVA resulted in statistically significant differences only for instruments (p = 0.047). Mann-Whitney identified the instruments which determined significant differences for HL thickness and tag length (t). Concerning to the adhesive types, these differences were only observed for (t). Conclusion: It can be concluded that 1) laser Er:YAG results in higher microshear bond strength values regardless of the adhesive system (TS and OS); 2) the tags did not significant affect the microshear bond strength; 3) the adhesive interface was affected by both the instruments for cavity preparation and the type of adhesive system used.
Resumo:
This study sought to assess the use of chlorhexidine with several excipients as a dentin surface treatment and its effect on marginal adaptation of class V restorations with current-generation dentin bonding agents. A total of 120 human third molars were selected and allocated into 12 groups, with standardized buccal class V restorations randomly divided into preconditioned dentin rinsed with: water; water + chlorhexidine; ethanol; or ethanol + chlorhexidine. After rinsing of dentin (previously conditioned with 35% phosphoric acid) with the test solutions, the Adper single bond 2, prime and bond 2.1, and Excite bonding systems were applied randomly. Restorations were performed with FiltekTM Z350 XT composite resin. The resulting specimens were subjected to thermal and mechanical load cycling. Quantitative analysis of marginal adaptation was performed on epoxy replicas by means of scanning electron microscopy. Results were assessed by means of the Kruskal-Wallis test (percentages of continuous margins) and Wilcoxon test (differences between percentages of continuous margins before and after thermal cycling and mechanical loading), at a significance level of p < 0.05. Outcomes in the chlorhexidine-treated groups were not superior to those obtained with other treatments.
Resumo:
This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: This study investigated the repairs of resin composite restorations after using different surface treatments.Design: Eighty four truncated cones of Filtek Z350 were prepared and thermo-cycled (20,000 cycles). Surfaces were roughened with diamond bur and etched with 37% phosphoric acid. Those cones were divided into 7 groups (N=12): 1) Prime&Bond 2.1; 2) aluminum oxide sandblasting+Prime&Bond 2.1; 3) Er:YAG laser treatment+Prime&Bond 2.1; 4) 9.6% hydrofluoric acid for 2 min-Fsilane coupling agent.; 5) silane coupling agent; 6) auto-polymerized acrylic monomer+Prime&Bond 2.1; 7) Adper Scothbond SE. Teflon device was used to fabricate inverted truncated cones of repair composite over the surface-treated. The bonded specimens were stressed to failure under tension. The data were analyzed with oneway ANOVA and Tukey tests.Results: Mean repair strengths (SD, in MPa) were, Group-2: 18.8a; Group-1: 18.7a; Group-6: 13.4ab; Group-7: 9.5bc; Group-3: 7.5bcd; Group-4: 5.2cd; Group-5: 2.6d.Conclusions: The use of diamond bur and a conventional adhesive and the use of aluminum oxide sandblasting prior to adhesive provided a simple and cost-effective solutions to composite repair. Er:YAG laser, silane alone, 9.6% hydrofluoric acid plus silane or a self-etching adhesive results in inferior composite repair strengths. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)