105 resultados para Xe lamp
Resumo:
A simulation model implemented in the programming software Delphi XE® was applied to evaluate sex selection in bovine. The hypothesis under investigation was that a dynamic model with stochastic and deterministic elements could detect the sexed semen technique to minimize pregnancy cost and to determine the adequate number of recipients required for in vivo (ET) and in vitro embryo production (IVP) in the proposed scenarios. Sex selection was compared through semen sexed using flow cytometry (C1) and density gradient centrifugation techniques (C2) in ET and IVP. Sensibility analyses were used to identify the adequate number of recipients for each scenario. This number was reinserted into the model to determine the biological and financial values that maximized ET and IVP using sexed semen (C1M and C2M). New scenarios showed that the density gradient technique minimized pregnancy cost based on the proposed scenarios. In addition, the adequate number of recipients (ET - C1M - 115 and C2M - 105)/(IVP - C1M - 145 and C2M - 140) per donor used was determined to minimize the pregnancy cost in all scenarios.
Resumo:
Ferroelectric SrBi2Ta2O9 thin films on Pt/Ti/SiO2/Si were successfully synthesized by the modified polymeric precursor method. The films were deposited by spin coating and crystallized by rapid thermal annealing in a halogen lamp furnace, followed by postannealing at temperatures ranging from 700 degreesC to 800 degreesC in an oxygen atmosphere. Microstructural and phase evaluations were followed by x-ray diffraction and atomic force microscopy. The films displayed spherical grain structures with a superficial roughness of approximately 3-6 nm. The dielectric constant values were 121 and 248 for films treated at 700 degreesC and 800 degreesC, respectively. The P-E curve showed a voltage shift toward the positive side, which was attributed to crystallization under the halogen illumination. The remanent polarization (2P(r)) and coercive field (E-c) were 7.1 muC/cm(2) and 113 kV/cm, and 18.8 muC/cm(2) and 93 kV/cm for the films treated at 700 degreesC and 800 degreesC, respectively. (C) 2001 American Institute of Physics.
Resumo:
The properties of edible films are influenced by several factors, including thickness. The purpose of this paper was to study the influence of thickness on the viscoelasticity properties, water vapor permeability, color and opacity of cassava starch edible films. These films were prepared by a casting technique, the film-forming solutions were 1, 2, 3 and 4% (w/v) of starch, heated to 70degreesC. Different thicknesses were obtained by putting 15 to 70 g of each solution on plexiglass plates. After drying at 30degreesC and ambient relative humidity, these samples were placed for 6 days at RH of 75%, at 22degreesC. The sample thicknesses were determined by a digital micrometer (+/-0.001 mm), as the average of nine different points. The viscoelasticity properties were determined by stress relaxation tests with a texture analyser TA.XT2i (SMS), being applied the Burgers model of four parameters. The water vapor permeability was determined with a gravimetric method, and color and opacity were determined using a Miniscan XE colorimeter, operated according to the Hunterlab method. All the tests were carried out in duplicate at 22degreesC. Practically, the four visco-elasticity properties calculated by the Burgers model had the same behavior, increasing with the thickness of all films, according to a power law model. The water vapor permeability and the color difference increased linearly with the thickness (0.013-0.144 mm) of all films prepared with solution of 1 to 4% of starch. on the other hand, the effect of the variation of the thickness over the opacity, was more important in the films with 1 and 2% of starch. It can be concluded that the control of the thickness in the elaboration of starch films by the casting technique is of extreme importance.
Resumo:
To possibly reduce postoperative adhesions that occur after ocular myoplasties, we investigated the topical effects of 0.04% mitomycin C on the repaired areas of the medial rectus muscle using an equine renal capsule preserved in 98% glycerin for reinforcement of the sutures. Twenty-four rabbits, divided into two groups of 12 animals each [untreated (control) and treated group (MMC)], were submitted to surgical rupture of the medial rectus muscle of one eye and repair of the defect 24 h later with sutures and an equine renal capsule. Post-operative prophylactic treatment of the two groups consisted of the administration of eye drops containing neomycin, polymyxin B and dexamethasone at regular 6-h intervals for eight consecutive days and daily rinsing with physiological saline. MMC animals received additional treatment with topical 0.04% mitomycin C every 6 h for 14 consecutive days. Slit lamp biomicroscopy showed greater irritation of the ocular surface in MMC animals during the first days post operatively. Adhesions were observed at 15 and 30 days of assessment in the two groups, but were more extensive in control animals at 60 days. Histopathology revealed inflammatory exudation in both groups, which was greater in MMC animals. Mitomycin C (0.04%) instilled at 6-h intervals for 14 consecutive days reduced the occurrence of fibrosis in the myoplastic areas. However, the equine renal capsule was found to be of little benefit for the reinforcement of myoplasties.
Resumo:
Electro-optical properties of sol-gel derived 2 mol% antimony or niobium doped tin dioxide films have been measured. The electron density has been calculated considering all the relevant scattering mechanisms and experimental conductivity data measured in the range -197 to 25 degrees C. The results support the hypothesis that both ionised impurity scattering and grain boundary scattering have comparable effects in the resistivity of coatings, for free electron density congruent to 5 x 10(18) cm(-3). We have measured variation of photoconductivity excitation with wavelength using xenon and deuterium lamp as light sources. Results show that the main band in the photoconductivity spectrum is dependent on the spectral light source emission, the excitation peak reaching 5 eV (deuterium lamp). This band is due to the recombination process involving oxygen species and photogenerated electron-hole pairs. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper presents a new model for the representation of electrodes' filaments of hot-cathode fluorescent lamps, during preheating processes based on the injection of currents with constant root mean square (rms) values. The main improvement obtained with this model is the prediction of the R-h/R-c ratio during the preheating process, as a function of the preheating time and of the rms current injected in the electrodes. Using the proposed model, it is possible to obtain an estimate of the time interval and the current that should be provided by the electronic ballast, in order to ensure a suitable preheating process. is estimate of time and current can be used as input data in the design of electronic ballasts with programmed lamp start, permitting the prediction of the R-h/R-c ratio during the initial steps of the design (theoretical analysis and digital simulation). Therefore, the use of the proposed model permits to reduce the necessity of several empirical adjustments in the prototype, in order to set the operation of electronic ballasts during the preheating process. This fact reduces time and costs associated to the global design procedure of electronic ballasts.
Resumo:
Objective-To investigate spontaneous locomotor activity (SLA) and antinociceptive effects of buprenorphine in horses.Animals-6 healthy adult horses.Procedures-Horses received each of 3 treatments (10 mL of saline [0.9% NaCl] solution, 5 mu g of buprenorphine/kg, or 10 mu g of buprenorphine/kg). Treatments were administered IV Order of treatments was randomized, and there was a 10-day interval between subsequent treatments. Spontaneous locomotor activity was investigated in a behavioral box by use of infrared photoelectric sensors connected to a computer, which detected movement of each horse. Antinociceptive effect was investigated by hoof-withdrawal reflex latency (HWRL) and skin-twitching reflex latency (STBL) after painful stimulation with a heat lamp.Results-Moderate excitement was observed in all horses from 5 to 10 minutes after the administration of both dosages of buprenorphine. The SLA increased significantly for 6 and 14 hours after IV administration of 5 and 10 mu g of buprenorphine/kg, respectively. Values for HWRL increased significantly only at 30 minutes after injection of 5 mu g of buprenorphine/kg, whereas STRL and HWRL each increased significantly from 1 to 6 hours (except at 2 and 4 hours) and 11 hours, respectively, after injection of 10 mu g of buprenorphine/kg.Conclusions and Clinical Relevance-IV injection of buprenorphine caused a dose-dependent increase in SLA, but only the dose of 10 mu g/kg induced analgesia on the basis of results for the experimental method used.
Resumo:
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 +/- 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes
Resumo:
Final-state qq̄ interactions give origin to nonzero values of the off-diagonal element ρ1,-1 of the helicity density matrix of vector mesons produced in e+e- annihilations, as has been confirmed by recent OPAL data on φ, D*, and K*. New predictions are given for ρ1,-1 of several mesons produced at large XE and small pT - i.e., collinear with the parent jet - in the annihilation of polarized e+ and e-; the results depend strongly on the elementary dynamics and allow further nontrivial tests of the standard model.
Resumo:
Since oxygen vacancies act as donors in SnO2, the electrical properties are related to deviation from stoichiometric composition. Depending on stoichiometry SnO2 can be highly insulating or may exhibit fairly high n-type conductivity. Since bandgap transitions are in the ultraviolet range, its photoconductivity is strongly dependent on the excitation source. We have measured variation of photoconductivity excitation with wavelength for tin dioxide grown by dip-coating sol-gel technique using several light sources: tungsten lamp, xenon, mercury and deuterium, and present selected results. The main band is obtained in the range 3-4eV according to light source spectrum in the ultraviolet range. The presence of oxygen in the cryostat also affects the spectrum since electron-hole pairs react with adsorbed oxygen specimens. © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Resumo:
The photo-Fenton process using potassium ferrioxalate as a mediator in the photodegradation reaction of organochloride compounds in an aqueous medium was investigated. The influence of parameters such as hydrogen peroxide and ferrioxalate concentrations and initial pH, was evaluated using dichloroacetic acid (DCA) as a model compound under black-light lamp irradiation. An upflow annular photoreactor, operating in a single pass or recirculating mode was used during photodegradation experiments with artificial light. The extent of the release of chloride ions was used to evaluate the photodegradation reaction. The optimum pH range observed was 2.5-2.8. The efficiency of DCA dechlorination increased with increasing concentrations of H2O2 and potassium ferrioxalate, reaching a plateau after the addition of 6 and 1.5 mmol/L of those reagents, respectively. The total organic carbon (TOC) content in DCA and 2,4-dichlorophenol (DCP) solutions was compared with the chloride released after photodegradation. The influence of natural solar light intensity, measured at 365 nm, was evaluated for the dechlorination of DCA on typical summer's days showing a linear dependency. The photodegradation of DCA using black-light lamp and solar irradiation was compared.
Resumo:
This paper presents a novel isolated electronic ballast for multiple fluorescent lamps, featuring high power-factor, and high efficiency. Two stages compose this new electronic ballast, namely, a new voltage step-down isolated Sepic rectifier, and a classical resonant Half-Bridge inverter. The new isolated Sepic rectifier is obtained from a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The average-current control technique is used in this preregulator stage in order to provide low phase displacement and low Total-Harmonic-Distortion (THD) at input current, resulting in high power-factor, and attending properly IEC 61000-3-2 standards. The resonant Half-Bridge inverter performs Zero-Voltage-Switching (ZVS), providing conditions for the obtaining of overall high efficiency. It is developed a design example for the new isolated electronic ballast rated at 200W output power, 220Vrms input voltage, 115Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Finally, experimental results are presented in order to verify the developed analysis. The THD at input current is equal to 5.25%, for an input voltage THD equal to 1.63%, and the measured overall efficiency is about 88.25%, at rated load.
Resumo:
This paper presents a high efficiency Sepic rectifier for an electronic ballast application with multiple fluorescent lamps. The proposed Sepic rectifier is based on a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The high power-factor of this structure is obtained using the instantaneous average-current control technique, in order to attend properly IEC61000-3-2 standards. The inverting stage of this new electronic ballast is a classical Zero-Voltage-Switching (ZVS) Half-Bridge inverter. A proper design methodology is developed for this new electronic ballast, and a design example is presented for an application with five fluorescent lamps 40W-T12 (200W output power), 220Vrms input voltage, 130Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Experimental results are also presented. The THD at input current is equal to 6.41%, for an input voltage THD equal to 2.14%, and the measured overall efficiency is about 92.8%, at rated load.
Resumo:
An electronic ballast for multiple tubular fluorescent lamps is presented in this paper. The proposed structure features high power-factor, dimming capability, and soft-switching to the semiconductor devices operated in high frequencies. A Zero-Current-Switching - Pulse-Width-Modulated (ZCS-PWM) SEPIC converter composes the rectifying stage, controlled by the instantaneous average input current technique, performing soft-commutations and high input power factor. Regarding the inverting stage, it is composed by a classical resonant Half-Bridge converter, associated to Series Parallel-Loaded Resonant (SPLR) filters. The dimming control technique employed in this Half-Bridge inverter is based on the phase-shift in the current processed through the sets of filter + lamp. In addition, experimental results are shown in order to validate the developed analysis.