130 resultados para X Chromosome


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unlike the X chromosome, the mammalian Y chromosome undergoes evolutionary decay resulting in small size. This sex chromosomal heteromorphism, observed in most species of the fossorial rodent Ctenomys, contrasts with the medium-sized, homomorphic acrocentric sex chromosomes of closely related C. maulinus and C. sp. To characterize the sequence composition of these chromosomes, fluorescent banding, self-genomic in situ hybridization, and fluorescent in situ hybridization with an X painting probe were performed on mitotic and meiotic plates. High molecular homology between the sex chromosomes was detected on mitotic material as well as on meiotic plates immunodetected with anti-SYCP3 and anti-gamma H2AX. The Y chromosome is euchromatic, poor in repetitive sequences and differs from the X by the loss of a block of pericentromeric chromatin. Inferred from the G-banding pattern, an inversion and the concomitant prevention of recombination in a large asynaptic region seems to be crucial for meiotic X chromosome inactivation. These peculiar findings together with the homomorphism of Ctenomys sex chromosomes are discussed in the light of the regular purge that counteracts Muller's ratchet and the probable mechanisms accounting for their origin and molecular homology. (C) 2014 S. Karger AG, Basel

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The desert locust (Schistocerca gregaria) has been used as material for numerous cytogenetic studies. Its genome size is estimated to be 8.55 Gb of DNA comprised in 11 autosomes and the X chromosome. Its X0/XX sex chromosome determinism therefore results in females having 24 chromosomes whereas males have 23. Surprisingly, little is known about the DNA content of this locust's huge chromosomes. Here, we use the Feulgen Image Analysis Densitometry and C-banding techniques to respectively estimate the DNA quantity and heterochromatin content of each chromosome. We also identify three satellite DNAs using both restriction endonucleases and next-generation sequencing. We then use fluorescent in situ hybridization to determine the chromosomal location of these satellite DNAs as well as that of six tandem repeat DNA gene families. The combination of the results obtained in this work allows distinguishing between the different chromosomes not only by size, but also by the kind of repetitive DNAs that they contain. The recent publication of the draft genome of the migratory locust (Locusta migratoria), the largest animal genome hitherto sequenced, invites for sequencing even larger genomes. S. gregaria is a pest that causes high economic losses. It is thus among the primary candidates for genome sequencing. But this species genome is about 50 % larger than that of L. migratoria, and although next-generation sequencing currently allows sequencing large genomes, sequencing it would mean a greater challenge. The chromosome sizes and markers provided here should not only help planning the sequencing project and guide the assembly but would also facilitate assigning assembled linkage groups to actual chromosomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O mercado demanda, desde final da década de 20, uma tecnologia para a sexagem de espermatozóides que possa ser inserida na indústria de produção de sêmen congelado e que tenha as seguintes características: a) não altere a viabilidade espermática; b) seja compatível com a congelação do espermatozóide sexado; c) permita a sexagem de espermatozóides previamente congelados e descongelados; d) permita a produção de várias doses de sêmen sexado congelado por dia, com custo compatível ao mercado. A importância dessa tecnologia para maximizar a produção animal a um custo baixo tem sido um desafio da pesquisa a vários anos. A possibilidade de produzir, em escala comercial, doses de sêmen enriquecidas com espermatozóides X ou Y aumentará os benefícios do uso da inseminação artificial no seu papel de maximizar o progresso genético entre gerações de acordo com os requerimentos de cada programa de melhoramento animal. Diferentes rotas tecnológicas são percorridas na tentativa de selecionar-se o sexo em mamíferos, tanto nas espécies de interesse zootécnico quanto em espécies ameaçadas de extinção, animais de companhia. Neste sentido, existem duas alternativas: a separação de espermatozóides portadores do cromossomo X, daqueles portadores do cromossomo Y; ou a sexagem de embriões pré-implantados. A viabilidade da sexagem de espermatozóides em bovinos é esperada por muitos anos e os desenvolvimentos recentes tornaram essa tecnologia de aplicação commercial. Entretanto, muitas limitações ainda existem, principalmente, referente à taxa de gestação em condições de campo. Isso restringe a utilização dessa tecnologia no melhoramento genético e produção animal. Nessa palestra abordaremos os potenciais sistemas de criação e produção que poderão beneficiar-se com a sexagem de espermatozóides, quando essas limitações forem solucionadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genes on the X chromosome are known to be responsible for more than 200 hereditary diseases. After IVF, the simple selection of embryo sex before uterine transfer can prevent the occurrence of affected offspring among couples at risk for these genetic disorders. The aim of this investigation was to develop a rapid method of preimplantation genetic diagnosis (PGD) using real-time polymerase chain reaction (PCR) for the sexing of human embryos, and to compare it to the fluorescence in-situ hybridization technique, considered to be the gold standard. After biopsies were obtained from 40 surplus non-viable embryos for transfer, a total of 98 blastomeres were analysed. It was possible to analyse 24 embryos (60%) by both techniques, generating a total of 70 blastomeres (35 per technique), white 28 blastomeres from 16 embryos (40%) were analysed only by real-time PCR. A rapid and safe method was developed in the present study for the sexual diagnosis of a single human cell (blastomere and buccal cell) using the emerging technology of real-time PCR. (C) 2009, Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been hypothesized that the AR (androgen receptor) gene binds the two PSA (prostate-specific antigen) alleles with differing affinities and may differentially influence prostate cancer risk. In this article, we report a case of adenocarcinoma of the prostate in a 56-year-old man with Klinefelter syndrome (47,XXY) and non-Hodgkin lymphoma, as well as the AR and PSA genotype. AR and PSA gene polymorphisms were analyzed by polymerase chain reaction-based methods using DNA from peripheral white blood cells and the prostate cancer. We determined the methylation status of the AR gene on the X chromosome. The patient presents with the AG genotype for the ARE-I (androgen response element) region of the PSA gene. We detect the presence of two short AR alleles with 19 and 11CAG repeats each. Unmethylated alleles were demonstrated for both. The shorter allele was inactive in more than 60% of total DNA in both control blood and prostate cancer cells. The presence of short AR alleles and the G allele of the PSA gene may contribute to the development of prostate cancer in a 47,XXY patient. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Uterine leiomyomas are common, benign, smooth muscle tumors representing a significant public health problem. The aim of this study was to investigate CYP17A1, CYP19, and androgen (AR) polymorphisms, their relative risks for uterine leiomyomas and possible associations with clinical parameters.Methods: Uterine leiomyoma tissues and blood samples were obtained from 87 patients, as were peripheral blood samples from 68 control women. Clinical data were recorded in both groups. The CYP17A1 (rs743572) polymorphism was analyzed by PCR-RFLP, and the CYP19 [TTTA](n) repeat and AR [CAG](n) repeat were analyzed using PCR-based GeneScan analysis. AR loss of heterozygosity (LOH) and microsatellite instability were also evaluated, while samples exhibiting LOH were analyzed for X inactivation.Results: Clinical parameters related to disease development did not differ between cases and controls. CYP17A1 *A2/*A2 genotype was prevalent in non-white women. CYP17A1, CYP19, and AR genotypes and alleles did not differ between groups. However, alleles presenting [TTTA](7) repeats in intron 4 of CYP19 were more frequent in the control group (p=0.0550). Shorter and longer [CAG]n repeat alleles of AR were exclusive to the leiomyoma group. The LOH assay showed allele losses at AR locus in four informative tumors and X chromosome inactivation analysis revealed that these tumors retained the active allele.Conclusions: The overall lack of association between uterine leiomyomas with polymorphisms involved in steroidogenesis or steroid metabolism is consistent with the hypothesis that these polymorphisms do not substantially contribute to the development of these tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The karyotypes of five species of Brazilian Pseudophyllinae belonging to four tribes were here studied. The data available in the literature altogether with those obtained with species in here studied allowed us to infer that 2n(♂)=35 is the highest chromosome number found in the family Tettigoniidae and that it is present in species belonging to Pseudophyllinae, Zaprochilinae and in one species of Tettigoniinae. In spite of that all five species exhibit secondary karyotypes arisen surely by a mechanism of chromosomal rearrangement of centric fusion, tandem fusion and centric inversion types from those with 2n(♂)=35 and FN=35, they share some common traits. The X chromosome is submetacentric (FN=36), heteropicnotic during the first prophase, the largest of the set but its size is rather variable among the species and the sex chromosomal mechanism is of the XO( ♂ ), XX( ♀ ) type. The chromosomal rearrangements involved in the karyotype evolution of the Pseudophyllinae and its relationship with those of the family Tettigoniidae are discussed and we propose that the basic and the ancestral karyotype of the Tettigoniidae is formed by 2n(♂)=35, FN=35 and not by 2n(♂)=31, FN= 31, as usually accepted.