126 resultados para Voltammetry, Fluorescence spectroscopy, Salbutamol, DNA, MCR-ALS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of hydrophobically modified poly(allylammonium) chloride having octyl, decyl, dodecyl and hexadecyl side chains has been studied in aqueous solution using fluorescence emission techniques. Micropolarity studies using the I-1/I-3 ratio of the vibronic bands of pyrene show that the formation of hydrophobic microdomains depends on both the length of the side chain and the polymer concentration. The I-1/I-3 ratio of the polymers with low hydrophobe content (less than 5% mel) changes substantially when reaching a certain concentration. These changes are assigned to aggregation originating from interchain interactions. This behaviour is also confirmed by the behaviour of the monomer/excimer emission intensities of pyrene- dodecanoic acid used as a probe. For polymers having dodecyl side chains and hydrophobe contents higher than 10%, aggregates are formed independently of the polymer concentration. Anisotropy measurements show that microdomains resulting from the inter- and/or intramolecular interactions are similar to those observed for cationic surfactants. Viscosity measurements show that the coil dimensions are substantially decreased for the polymers having high hydrophobe contents, indicating intramolecular associations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanoscale interactions between adjacent layers of layer-by-layer (LBL) films from poly(allylamine hydrochloride) (PAH) and azodye Brilliant Yellow (BY) have been investigated, with the films employed for optical storage and the formation of surface-relief gratings. Using Fourier transform infrared spectroscopy, we identified interactions involving SO3- groups from BY and NH3+ groups from PAH. These electrostatic interactions were responsible for the slow kinetics of writing in the optical storage experiments, due to a tendency to hinder photoisomerization and the subsequent reorientation of the azochromophores. The photoinduced birefringence did not saturate after one hour of exposure to the writing laser, whereas in azopolymer films, saturation is normally reached within a few minutes. on the other hand, the presence of such interactions prevented thermal relaxation of the chromophores after the writing laser was switched off, leading to a very stable written pattern. Moreover, the nanoscale interactions promoted mass transport for photoinscription of surface-relief gratings on PAH/BY LBL films, with the azochromophores being able to drag the inert PAH chains when undergoing the trans-cis-trans photoisomerization cycles. A low level of chromophore degradation was involved in the SRG photoinscription, which was confirmed with micro-Raman and fluorescence spectroscopies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of N-isopropylacrylamide (NIPAM)-acrylic acid-ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (T-c). Solutions of polymers containing 10% or less of AA display a constant T-c for pH above 5.5, with 15% there is a continuous increase in T-c with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I (1)/I (3) ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than T-c, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile21)-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC13]Ctx(Ile21)-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile21)-Ha and [TOAC13]Ctx(Ile21)-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC0]Ctx(Ile21)-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC2 and TOAC13 derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane. © 2013 Vicente et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Jatropha gossypifolia has been used quite extensively by traditional medicine for the treatment of several diseases in South America and Africa. This medicinal plant has therapeutic potential as a phytomedicine and therefore the establishment of innovative analytical methods to characterise their active components is crucial to the future development of a quality product. Objective To enhance the chromatographic resolution of HPLC-UV-diode-array detector (DAD) experiments applying chemometric tools. Methods Crude leave extracts from J. gossypifolia were analysed by HPLC-DAD. A chromatographic band deconvolution method was designed and applied using interval multivariate curve resolution by alternating least squares (MCR-ALS). Results The MCR-ALS method allowed the deconvolution from up to 117% more bands, compared with the original HPLC-DAD experiments, even in regions where the UV spectra showed high similarity. The method assisted in the dereplication of three C-glycosylflavones isomers: vitexin/isovitexin, orientin/homorientin and schaftoside/isoschaftoside. Conclusion The MCR-ALS method is shown to be a powerful tool to solve problems of chromatographic band overlapping from complex mixtures such as natural crude samples. Copyright © 2013 John Wiley & Sons, Ltd. Extracts from J. gossypifolia were analyzed by HPLC-DAD and, dereplicated applying MCR-ALS. The method assisted in the detection of three C-glycosylflavones isomers: vitexin/isovitexin, orientin/homorientin and schaftoside/isoschaftoside. The application of MCR-ALS allowed solving problems of chromatographic band overlapping from complex mixtures such as natural crude samples. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was the preparation of inorganic mesoporous materials from silica, calcium phosphate and a nonionic surfactant and to evaluate the incorporation and release of different concentrations of osteogenic growth peptide (OGP) for application in bone regeneration. The adsorption and release of the labeled peptide with 5,6-carboxyfluorescein (OGP-CF) from the mesoporous matrix was monitored by fluorescence spectroscopy. The specific surface area was 880 and 484 m2 g- 1 for pure silica (SiO) and silica/apatite (SiCaP), respectively; the area influenced the percentage of incorporation of the peptide. The release of OGP-CF from the materials in simulated body fluid (SBF) was dependent on the composition of the particles, the amount of incorporated peptide and the degradation of the material. The release of 50% of the peptide content occurred at around 4 and 30 h for SiCaP and SiO, respectively. In conclusion, the materials based on SiO and SiCaP showed in vitro bioactivity and degradation; thus, these materials should be considered as alternative biomaterials for bone regeneration. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)