90 resultados para Ultraviolet radiation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L-1 of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L-1 NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photoelectrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT), and the results of a study of the adsorption and pre-concentration (in batch and using a flow-injection system coupled to an absorption atomic spectrometer) of Cu(II), Ni(II) and Pb(II) in aqueous medium. The adsorption capacities for each metal ions in mmol g -1 were: Cu(II)= 1.18, Ni(II)= 1.15 and Pb(II)= 1.10. The results obtained in the flow experiments showed a recovery of practically 100% of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 μL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the application of a flow-injection system for the pre-concentration and quantification by FAAS of metal ions at trace level in natural water samples digested and not digest by an oxidizing UV photolysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sparfloxacin, a third generation fluoroquinolone derivative, is a potent antibacterial agent active against a wide range of Gram-positive and Gram-negative organisms including Streptococcus pneuinoniae, Staphylococcus aureus, methicillin resistant S. aureus, Legionella spp., Mycoplasina spp., Chlamydia spp. and Mycobacterium spp. A drawback of fluoroquinolones is their photoreactivity. Sparfloxacin has been studied in terms of therapeutic activities. However, there are few published of analytical methods being applied to sparfloxacin. The aim in this study was to determine the photodegradation products of sparfloxacin, when submitted to UV light, and to characterize two of these products, designated SPAX-PDP1 and SPAX-PDP2. An accelerated study of stability in methanol solution was carried out by exposing a solution of sparfloxacin to UV light (peak wavelength 290 nm) for 36 hours at room temperature. The products were analyzed by NMR spectrophotometry, IR spectrometry and mass spectrophotometry. The results suggest that the products isolated here could be used to estimate the degradation of sparfloxacin in a stability study. However, the low activity exhibited by UV-irradiated sparfloxacin is a source of concern that demands further investigation of the mechanism of its photodegradation mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to assess color alteration of the paints used for iris painting in artificial eyes. Five disks of heat cured acrylic resin were confectioned by microwave energy for each paint analyzed, in a total of 40 specimens. Each specimen consisted of a colorless acrylic resin disk and another of equal size, of scleral white colored acrylic resin, with the painting interposed between the two disks. The specimens were submitted to an accelerated aging process in a chamber under ultraviolet radiation for 1,008 hours. To assess color variation, a reflective spectrophotometer was used. The results were statistically analyzed by ANOVA and the Tukey test (p < 0.05). All the paints underwent chromatic alteration. The oil paint presented the highest resistance to accelerated aging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colour stability of resin and silicone is an important factor for longevity of facial prostheses. The aim of this study was to evaluate the colour stability of resins and silicone for facial prostheses. Three brands of acrylic resin and one of facial silicone were evaluated considering pigment incorporation for the colourless materials. Ten samples of each material were fabricated and submitted to measurements of chromatic alteration initially and after 90 and 180 days of weathering natural through visual analysis and spectrophotometry. Data were evaluated by ANOVA and Tukey test (p < 0.05). Statistically significant colour alteration was observed among some materials regardless of the period. The materials did not present a statistical difference between 90 and 180 days except for the pigmented heat-polymerized resin. The colour difference between pigmented Silastic MDX4-4210 and colourless Silastic was statistically significant (p < 0.01) in both periods as well as between pigmented and colourless heat-polymerized resin, and between the resins Rapidaflex and Lentaflex. The visual method demonstrated colour alteration in all materials evaluated during the first 90 days of ageing. All materials exhibited colour alteration due to exposure to environment. © 2012 Informa UK, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents results from stress cracking (SC) tests performed in both fresh and exposed high density polyethylene (HDPE) geomembranes (GM). The HDPE GMs were exposed to ultraviolet radiation, thermal aging (air oven) and tested for chemical compatibility with sodium hydroxide. Stress cracking tests in both fresh and degraded samples were performed in accordance to ASTM D5397: Notched Constant Tensile Load Test (NCTL) and Single Point-Notched Constant Tensile Load Test (SP-NCTL). The results of the NCTL showed that the geomembrane degradation process can be considered to be a catalyst for the phenomenon of SC because it caused a 50% to 60% reduction in stress crack resistance. The most resistance reduction was observed for the sample under chemical compatibility with sodium hydroxide. For the SP-NCTL, the results showed that the samples maintain the same trend verified in the NCTL. The largest resistance reduction was evidenced in samples undergoing ultraviolet degradation. © 2012 ejge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CeO2 nanoparticles were synthesized by the precipitation method and modified with para-toluene sulfonic acid (PTSH), either in situ or post-synthesis. The presence of PTSH in the samples was confirmed by FTIR. PXRD and FTIR analyses showed that the post-synthesis PTSH modification altered the CeO2 structure, whereas the in situ modification maintained intact the crystalline structure and UV-vis absorbance properties. For both in situ and post-synthesis modifications, TEM images revealed the presence of nanoparticles that were 5nm in size. The dispersibility of the in situ PTSH-modified material in a hydrophilic ureasil-poly(ethylene oxide) matrix was investigated using SAXS measurements, which indicated that CeO2 nanoparticles modified with PTSH in situ were less aggregated within the matrix, compared to unmodified CeO2 nanoparticles. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodegradable nanoparticles have been widely explored as carriers for controlled delivery of therapeutic molecules; however, studies describing the development of nanoparticles as carriers for biopesticide products are few. In this work, a new method to prepare nanoparticles loaded with neem (Azadirachta indica) extracts is presented. In this study, nanoparticles were formulated as colloidal suspension and (spray-dried) powder and characterized by evaluating pH, particle size, zeta potential, morphology, absolute recovery, and entrapment efficiency. A high-performance liquid chromatography method was used for nanoparticle characterization. The best formulations presented absolute recovery and entrapment efficiencies of approximately 100% and a release profile based on swelling and relaxation of the polymer or polymer erosion. The biological data of the formulated products against Plutella xylostella showed 100% larval mortality. The nanoparticle information improved the stability of neem products against ultraviolet radiation and increased their dispersion in the aqueous phase. © 2013 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)