63 resultados para Trincas e equipamentos de petróleo e gás
Resumo:
The oil extraction in deep waters sparked new areas of knowledge, the creation of engineering courses dedicated just to these processes and a wide field of analysisvoiding multiple impacts in case of faults, mainly the economic and environmental. This paper aims to show on the effects and causes of fatigue failure in steel tubes used for oil and gastransportation (linepipe), mainly caused by vortex induced vibrations, or VIV. To make this, through laboratory tests, it found trough the curve Stress versus Number of Cycles, and thus estimating that with a stress value of 350 MPa or less, the fatigue life cycle of the API 5CT T95 (1% Cr) pipe is estimated infinite. It could conclude that the analyzed material has good fatigue failure resistance for offshore use, taking into account only the influence of VIV's, since there are no stress concentrators
Resumo:
A monografia apresenta um breve panorama dos aspectos econômicos do Estado do Rio de Janeiro com o intuito de destacar o papel da indústria do petróleo na economia do mesmo, assim como as rendas provenientes dos pagamentos de royalties e participações especiais aos municípios produtores. O fato é que enormes recursos são entregues a esses municípios, o que torna extremamente importante a investigação da qualidade da alocação destes. Ambiciona-se por meio deste trabalho a análise das despesas culturais dos municípios fluminenses com o propósito de identificar se as cidades que mais recebem royalties gastam relativamente mais nesta área comparado a outras. Este exame é relevante, principalmente pela dificuldade de definição do conceito de cultura e por as contas culturais municipais não serem auditadas pelos Tribunais de Contas, o que favoreceria um possível canal de desvio de verbas públicas
Resumo:
The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material
Resumo:
Due to the new discoveries of oil and gas reservoirs, and also the increasing production of bio-fuels, the brazilian general pipeline system is being vertiginously extended. On the other hand, there is a lack of clear parameters that would allow a better utilization of the geological-geotechnical studies in the process of environmental licensing of pipeline systems. Therefore, this paper presents guidelines that would orientate the environmental licensing procedures to build pipeline systems, and also the geological-geotechnical studies that would support the characterization of the physical context. The method applied in this study consisted in the existing data survey and in their organization, analysis and review. In doing so, there is a well-subsidy integration of the many steps of the pipeline system implementation, the required environmental licenses and the investigation methods of the correlated physical context. As a result, it’s presented a flowchart of the guidelines, detailing the interaction between the environmental licensing, the geological-geotechnical studies and the phases of the pipeline’s project.
Resumo:
Because the high consumption of welded pipe for exploration and conduction oil and gas, optimization of manufacturing processes is necessary to obtain better productivity, efficiency and cost reduction. The objective of this study is to analyze the forms of heat transfer during the welding of pipes using longitudinal submerged arc process them to propose a model for the temperature distribution in the welded region. For this analysis are addressed as the heat transfer modes operate in the specified welding process and the necessary considerations for the mathematical model were obtained. The calculations were performed and the simulations needed to obtain the temperature distribution in the tube were carried out. Therefore, the practice was satisfactory and the results showed a range of temperatures along the pipe for a particular model and the future suggestions for improvement of this work
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Oil is a hydrocarbon mixture of various sizes, including saturated and aromatic compounds. Natural gas is a mixture of gaseous hydrocarbons and its main component is methane. In our society, the great demand for these fuels requires fast extraction, transportation and refining, increasing the number of accidents that compromise the environment. Oil is a finite resource and it is necessary to reduce the problems related to the question concerning environmental pollution which has encouraged the search for alternative fuel sources in our country. So today we have two major biofuels: ethanol and biodiesel. Concurrently, many studies have been done directed toward the isolation of microorganisms capable of degrading petrochemical industrial wastes, most of them using as a source of isolation soil and water collected in a contaminated environment. Isolation from alternative substrates has emerged as a new strategy that has provided satisfactory results. In this work, we present the leaf-cutter ants of the Attini tribe as a source for the isolation of micro-fungi with the potential for hydrocarbon degradation. These insects have a social way of life and a highly specialized system of intra and interspecific communication, which is based on the recognition of individuals through volatile chemical compounds, the majority hydrocarbons, stored in their exoskeleton. The micro-environment exoskeleton of Attini ants (genus Atta) used in this work proved to be a rich source of microbial biodiversity, as other studies have found. The flotation isolation technique applied here allowed the achievement of 214 micro-fungi, 118 representatives of the dematiaceous fungi group and 96 hyaline filamentous fungi. They were submitted to toluene degradation tests and at least one strain of each genus presented good results, namely Teratosphaeria, Exophiala, Cladosporium, Penicillium, Aspergillus... (Complete abstract click electronic access below)
Resumo:
The gas turbine (GT) is known to have: low cost of capital over the amount of energy, high flexibility, high reliability, short delivery time, commissioning and commercial operation at the beginning and quick departure. The gas turbine is also recognized for its superior environmental performance, manifested in air pollution containment and reducing greenhouse gases (Mahi, 1994). Gas turbines in simple cycle mode (SC) have long been used by utilities to limited power generation peak. In addition, manufacturing facilities use gas turbines for power generation units on site, often in combination with the process of heat production, such as hot water and steam process. In recent years, the performance of industrial gas turbines has been improved due to significant investments in research and development, in terms of fuel to electricity conversion efficiency, plant capacity, availability and reliability. The greater availability of energy resources such as natural gas (NG), the significant reduction of capital costs and the introduction of advanced cycles, have also been a success factor for the increased use of gas turbines to load applications base (Poulikas, 2004). Open Cycle Gas Turbine with a greater degree of heat to the atmosphere may alternatively be used to produce additional electricity using a steam cycle, or to compose a cogeneration process. The combined cycle (CC) uses the heat from the gas turbine exhaust gas to increase the power output and increase the overall efficiency of more than 50% second (Najjar, 2001). The initial discovery of these cycles in the commercial power generation market was possible due to the development of the gas turbine. Only from the 1970s that gas turbine inlet temperature and therefore the exhaust gas temperature was sufficiently high to allow a better efficiency in the combined cycle ... (Complete Abstract click electronic access below)
Resumo:
This paper presents a study based on literature and examples found on literature of the potential of petroleum gas to be used as a primary source to generate electricity. The steady increase electricity demand in Brazil makes desirable an effective use of all available primary sources, combined with this need the momentum of the country with the discovery of the presalt reserves becomes interesting the use of this gas, often wasted, for generating electricity. The electricity generation in this work is illustrated by the cogeneration in oil refining plants that have the combined cycle thermal operation. The ultimate goal is to provide a text to identify the advantages, disadvantages and trends of this type of generation
Resumo:
JUSTIFICATIVA E OBJETIVOS: em pacientes sob intubação traqueal ou traqueostomia, a umidificação e o aquecimento do gás inalado são necessários para a prevenção de lesões no sistema respiratório, conseqüentes ao contato do gás frio e seco com as vias aéreas. O objetivo da pesquisa foi avaliar o efeito do sistema respiratório circular com absorvedor de dióxido de carbono do aparelho de anestesia Cícero da Dräger, quanto à capacidade de aquecimento e umidificação dos gases inalados, utilizando-se fluxo baixo (1 L.min-1) ou mínimo (0,5 L.min-1) de gases frescos. MÉTODO: O estudo aleatório foi realizado em 24 pacientes, estado físico ASA I, com idades entre 18 e 65 anos, submetidos à anestesia geral, utilizando-se a Estação de Trabalho Cícero da Dräger (Alemanha), para realização de cirurgias abdominais, os quais foram distribuídos aleatoriamente em dois grupos: grupo de Baixo Fluxo (BF), no qual foi administrado 0,5 L.min-1 de oxigênio e 0,5 L.min-1 de óxido nitroso e fluxo mínimo (FM), administrando-se somente oxigênio a 0,5 L.min-1. Os atributos estudados foram temperatura, umidade relativa e absoluta da sala de operação e do gás no sistema inspiratório. RESULTADOS: Os valores da temperatura, umidade relativa e umidade absoluta no sistema inspiratório na saída do aparelho de anestesia e junto ao tubo traqueal não apresentaram diferença significante entre os grupos, mas aumentaram ao longo do tempo nos dois grupos (BF e FM), havendo influência da temperatura da sala de operação sobre a temperatura do gás inalado, nos dois grupos estudados. Níveis de umidade e temperatura próximos dos ideais foram alcançados, nos dois grupos, a partir de 90 minutos. CONCLUSÕES: Não há diferença significante da umidade e temperatura do gás inalado utilizando-se baixo fluxo e fluxo mínimo de gases frescos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)