115 resultados para Trapping
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies on patterns of habitat use by mammals are necessary for understanding the mechanisms involved in their distribution and abundance. In this study, we used the spool-and-line method to investigate habitat utilization by two sigmodontine rodents from Brazilian Cerrado, Necromys lasiurus and Oryzomys scotti. We conducted the study in a Cerrado area in central Brazil (15 degrees 56'S and e 47 degrees 56'W) where the animals were caught in an area of 7.68 ha of Cerrado sensu stricto. Captured individuals were marked, equipped with a spool-and-Line device, and released at the same capture point. The next day we followed the thread to record their daily movements and find their nests. To investigate microhabitat selection we compared habitat characteristics along traits of each studied species with general habitat characteristics of the study area. Although the mean 24-h distance was greater for N. lasiurus (mean +/- SE: 41.9 +/- 42.2 m, N=3) than for O. scotti (28.7 +/- 14.2 m, N=6) this difference was not significant (Mann-Whitney test, U=26, P>0.6). We detected significant differences among observed microhabitats variables of both species and available microhabitat characteristics as determined by discriminant analysis (Wilks's lambda F=3.001; df=14, 116; P<0.001). Both species were associated to microhabitat characteristics whose values differed markedly from the overall available habitat. Along the first canonical discriminant function of the DFA both them were associated with greater grass height than the mean height available and along the second axis N. lasiurus selected areas with higher fruit availability and more shelters than those selected by 0. scotti. For stronger inferences regarding differential patterns of habitat utilization by Cerrado rodents we suggest the simultaneous use of both spool-and-line and standard trapping methods. (c) 2005 Deutsche Geseltschaft fur Saugetierkunde. Published by Elsevier GmbH. ALL rights reserved.
Resumo:
We studied the succession of small mammal species after fire in the cerrado (Neotropical savanna) of Central Brazil. Populations of small mammals were sampled with live-trapping techniques in a series of nine sites of different successional age, ranging from 1 to 26 years after fire. Ten species of small mammals were captured through all the seral stages of succession. Species richness ranged from two to seven species by seral stage. The species were arranged in different groups with respect to abundance along the succession: the first was composed of early successional species that peaked <2 years after fire (Calomys callosus, C. tener, Thalpomys cerradensis, Mus musculus, Thylamys velutinus); the second occurred or peaked 2-3 years after fire (Necromys lasiurus, Gracilinanus sp., Oryzomys scoth). Gracilinanus agilis peaked in the last seral stage. Species richness of small mammals showed an abrupt decrease from an average of four species immediately after fire to two species 5-26 years after the last fire. We propose a simple graphical model to explain the pattern of species richness of small mammals after fire in the cerrado. This model assumes that the occurrence of species of small mammals is determined by habitat selection behavior by each species along a habitat gradient. The habitat gradient is defined as the ratio of cover of herbaceous to woody vegetation. The replacement of species results from a trade-off in habitat requirements for the two habitat variables.
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Poços de potenciais quadrados têm sido bastante explorados, tanto do ponto de vista de aplicação como introdução didática à mecânica quântica. Existem bem poucos potenciais desse tipo que são tratados analiticamente na literatura, embora várias geometrias envolvendo esses poços de potenciais possam ser construídas. Nesse trabalho estudamos o poço duplo quadrado unidimensional assimétrico que possui potencial para uma variedade de aplicações, por exemplo, o aprisionamento atômico devido à diferença de profundidades entre poços vizinhos. As funções de onda e autovalores de energia são determinados explicitamente para um caso ressonante e outro não ressonante.
Resumo:
É apresentada uma análise dos possíveis impactos que a diminuição da vegetação nativa, notadamente das florestas ripárias, pode causar sobre a ictiofauna. Três conjuntos de aspectos funcionais primordiais desempenhados pelas florestas ripárias são discutidos: transferência de energia solar ao ambiente aquático, interceptação de nutrientes e sedimentos que adentram nos rios e trocas de material orgânico entre o sistema terrestre e aquático. Conclui-se que qualquer alteração que se traduza em mais perdas de vegetação nativa, seja em áreas de preservação permanente ou em reservas legais, pode gerar perdas de espécies, homogeneização faunística e diminuição de biomassa íctica.
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate in an axially symmetric harmonic trap alone during resonant collective oscillations via a classical dynamical transition. The forced resonant oscillation can be initiated by (a) periodic modulation of the atomic scattering length with a frequency that equals twice the radial trapping frequency or multiples thereof, or by (b) periodic modulation of the radial trapping potential with a frequency that equals the radial trapping frequency or multiples thereof. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.
Resumo:
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.
Resumo:
The effects of a sudden increase and decrease of the interatomic interaction and harmonic-oscillator trapping potential on vortices in a quasi two-dimensional rotating Bose-Einstein condensate are investigated using the mean-field Gross-Pitaevskii equation. We also study the decay of vortices when the rotation of the condensate is suddenly stopped. Upon a free expansion of a rotating BEC with vortices the radius of the vortex core increases more rapidly than the radius of the condensate. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length.The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibility of stabilization of the unstable pi-mode regime. (C) 2000 Published by Elsevier B.V. B.V. PACS: 03.75.Fi; 05.30.Jp.
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate (BEC) trapped in a combined optical and axially-symmetric harmonic potentials during a resonant collective excitation initiated by a periodic modulation of the atomic scattering length a, when the modulation frequency equals twice the radial trapping frequency or multiples thereof. This classical dynamical transition is marked by a loss of superfluidity in the BEC and a subsequent destruction of the interference pattern upon free expansion. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.