38 resultados para Toxic trace metals
Resumo:
During the last years, the emission of heavy metals to the environment has increased, causing a severe negative impact to the ecosystems and seriously compromising human health due to their mutagenic potential. Tri- (III) and hexavalent (VI) chromium (Cr) constitute the oxidative states of the metal chromium that are active in living organisms. These two oxidation states of the chromium differ with regards to their cellular effects, mainly due to the different abilities they possess in relation to easy of transport through biological membranes. Cr VI is transported into the cell through transference channels of endogenous anions that are isostructural and isoelectronical to Cr VI, such as SO 4 -2 and HPO 4 -2. On the other hand, Cr III is unable to diffuse through the cell membrane. Its existence inside the cells is generally due to the reduction of Cr VI, the endocytosis, or the absortion by the cells via phagocytosis. Cr III acts directly on the DNA molecule, while Cr VI reacts little with this molecule. In the ecosystem, however, Cr VI is more dangerous since this is the form that presents greater reactivity with biological membranes, crossing them and being easily incorporated into the cell. In the cell it is biotransformed to Cr III, a potentially mutagenic molecule. In vivo and in vitro studies have shown that organisms exposed to Cr VI present greater induction to a variety of damages to the DNA molecule. Among the damages induced by Cr, changes in the structure of the DNA molecule have been reported, with breaks of the major chain and base oxidation. In the organisms, these alterations generate chromosomal aberrations, micronucleus formation, sister chromatid exchanges, and errors in DNA synthesis.
Resumo:
In this study, a green adsorbent was successfully applied to remove toxic metals from aqueous solutions. Dried minced castor leaves were fractionated into 63-μm particles to perform characterization and extraction experiments. Absorption bands in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 1544, 1232 and 1350 cm-1 were assigned to nitrogen-containing groups. Elemental analysis showed high nitrogen and sulfur content: 5.76 and 1.93%, respectively. The adsorption kinetics for Cd(II) and Pb(II) followed a pseudo-second-order model, and no difference between the experimental and calculated Nf values (0.094 and 0.05 mmol g-1 for Cd(II) and Pb(II), respectively) was observed. The Ns values calculated using the modified Langmuir equation, 0.340 and 0.327 mmol g-1 for Cd(II) and Pb(II), respectively, were superior to the results obtained for several materials in the literature. The method proposed in this study was applied to pre-concentrate (45-fold enrichment factor) and used to measure Cd(II) and Pb(II) in freshwater samples from the Paraná River. The method was validated through a comparative analysis with a standard reference material (1643e). © 2013 Elsevier B.V. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)