74 resultados para Timber physics.
Resumo:
We explore the potential of the Next Linear Collider, operating in the e γ mode, to disentangle new physics scenarios in single W production. We study the effects related to the exchange of composite fermions in the reaction e γ→Wνe, and compare them with those arising from trilinear gauge boson anomalous couplings. We stress the role played by the initial state polarization to increase the reach of this machine and to discriminate the possible origin of the new phenomena.
Resumo:
We obtain constraints on possible anomalous interactions of the top quark with the electroweak vector bosons arising from the precision measurements at the Z pole. In the framework of SU(2)L ⊕ U(1)Y chiral Lagrangians, we examine all effective CP-conserving operators of dimension five which induce fermionic currents involving the top quark. We constrain the magnitudes of these anomalous interactions by evaluating their one-loop contributions to the Z pole physics. Our analysis shows that the operators that contribute to the LEP observables get bounds close to the theoretical expectation for their anomalous couplings. We also show that those which break the SU(2)C custodial symmetry are more strongly bounded. © 1997 Elsevier Science B.V.
Resumo:
This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP) main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m) and two end magnets (0.1585 T), in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. POISSON code was used to give the final configuration that includes auxiliary pole pieces (clamps) and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; PTRACE code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a magnetic shower that provides uniformity of ±0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of ±0.001% in an average field of 0.1 T and will also be employed for these end magnets. © 1999 The American Physical Society.
Resumo:
We present a model of fermion masses based on a minimal, non-Abelian discrete symmetry that reproduces the Yukawa matrices usually associated with U(2) theories of flavor. Mass and mixing angle relations that follow from the simple form of the quark and charged lepton Yukawa textures are therefore common to both theories. We show that the differing representation structure of our horizontal symmetry allows for new solutions to the solar and atmospheric neutrino problems that do not involve modification of the original charged fermion Yukawa textures, or the introduction of sterile neutrinos. (C) 2000 Elsevier Science B.V.
Resumo:
The Nailed Box Beam structural efficiency is directly dependent of the flange-web joint behavior, which determines the partial composition of the section, as the displacement between elements reduces the effective rigidity of the section and changes the stress distribution and the total displacement of the section. This work discusses the use of Nailed Plywood Box Beams in small span timber bridges, focusing on the reliability of the beam element. It is presented the results of tests carried out in 21 full scale Nailed Plywood Box Beams. The analysis of maximum load tests results shows that it presents a normal distribution, permitting the characteristic values calculation as the normal distribution theory specifies. The reliability of those elements was analyzed focusing on a timber bridge design, to estimate the failure probability in function of the load level.
Resumo:
In the presence of a cosmological constant, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincaré and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale. © 2007 American Institute of Physics.
Resumo:
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.
Resumo:
Hardness is a property largely used in material specifications, mechanical and metallurgical research and quality control of several materials. Specifically for timber, Janka hardness is a simple, quick and easy test, with good correlations with the compression parallel to grain strength, a strong reference in structural classification for this material. More recently, international studies have reported the use of Brinell hardness for timber assessment which resumes the advantages previously mentioned for Janka hardness and make it easier to be performed in the field, especially because of the lower magnitude of the involved loads. A first generation of an equipment for field evaluation of hardness in wood - Portable Hardness tester for wood - based on Brinell hardness has already been developed by the Research Group on Forest Products from FCA/UNESP, Brazil, with very good correlations between the evaluated hardness and several other mechanical properties of the material when performing tests with different species of native and reforested wood (traditionally used as ties - sleepers - in railways). This paper presents results obtained in the experimental program with the first generation of this equipment and preliminary tests with its second generation, which uses accelerometers to substitute the indentation measurements in wood. For the first generation of the equipment functional and calibration tests were carried out using 16 native and reforestation timber lots, among there E. citriodora, E. tereticornis, E. saligna, E. urophylla, E. grandis, Goupia glabra and Bagassa guianenses, with different origins and ages. The results obtained confirm its potential in the classification of specimens, with inclusion errors varying from 4.5% to 16.6%.
Resumo:
The common point between the two forms of production of the wood-based sector in Brazil, one practically manufacturing and the other high technology, is in the qualification of the of the labor. In both cases, the professionals are being formed directly in the productive line and rarely with qualification in the academic area. There is not a public political education for the qualification of the labor, and the work market that does not demand qualified professionals, contributes for the sector stagnation. So, in order to excel the socio-cultural barriers in relation to the use of wood in the buildings, new attitudes are necessary in the teaching of the contents of the curricular programs, mainly, in formation of the architect and civil engineering.
Resumo:
A search for new physics is performed using isolated same-sign dileptons with at least two b-quark jets in the final state. Results are based on a 4.98 fb -1 sample of protonproton collisions at a centre-of-mass energy of 7TeV collected by the CMS detector. No excess above the standard model background is observed. Upper limits at 95% confidence level are set on the number of events from non-standard-model sources. These limits are used to set constraints on a number of new physics models. Information on acceptance and efficiencies are also provided so that the results can be used to confront additional models in an approximate way. © 2012 SISSA.
Resumo:
A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy s=7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 fb-1. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this Letter. © 2012 CERN.
Resumo:
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.
Resumo:
This Letter describes the search for an enhanced production rate of events with a charged lepton and a neutrino in high-energy pp collisions at the LHC. The analysis uses data collected with the CMS detector, with an integrated luminosity of 5.0 fb-1 at √s=7 TeV, and a further 3.7 fb -1 at √s=8 TeV. No evidence is found for an excess. The results are interpreted in terms of limits on a heavy charged gauge boson (W ′) in the sequential standard model, a split universal extra dimension model, and contact interactions in the helicity-nonconserving model. For the last, values of the binding energy below 10.5 (8.8) TeV in the electron (muon) channel are excluded at a 95% confidence level. Interpreting the ℓν final state in terms of a heavy W′ with standard model couplings, masses below 2.90 TeV are excluded. © 2013 CERN.
Resumo:
A search for new physics is performed using events with isolated same-sign leptons and at least two bottom-quark jets in the final state. Results are based on a sample of proton-proton collisions collected at a center-of-mass energy of 8 TeV with the CMS detector and corresponding to an integrated luminosity of 10.5 fb-1. No excess above the standard model background is observed. Upper limits are set on the number of events from non-standard-model sources and are used to constrain a number of new physics models. Information on acceptance and efficiencies is also provided so that the results can be used to confront an even broader class of new physics models. © 2013 CERN for the benefit of the CMS collaboration.