79 resultados para Three Dimensional Graphics and Realism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Materials and Methods: Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Results: Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Conclusion: Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:482-491

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This three-dimensional finite element analysis study evaluated the effect of different material combinations on stress distribution within metal-ceramic and all-ceramic single implant-supported prostheses. Materials and Methods: Three-dimensional finite element models reproducing a segment of the maxilla with a missing left first premolar were created. Five groups were established to represent different superstructure materials: GP, porcelain fused to gold alloy; GR, modified composite resin fused to gold alloy; TP, porcelain fused to titanium; TR, modified composite resin fused to titanium; and ZP, porcelain fused to zirconia. A 100-N vertical force was applied to the contact points of the crowns. All models were fixed in the superior region of bone tissue and in the mesial and distal faces of the maxilla section. Stress maps were generated by processing with finite element software. Results: Stress distribution and stress values of supporting bone were similar for the GP, GR, TP, and ZP models (1,574.3 MPa, 1,574.3 MPa, 1,574.3 MPa, and 1,574.2 MPa, respectively) and different for the TR model (1,838.3 MPa). The ZP model transferred less stress to the retention screw (785 MPa) than the other groups (939 MPa for GP, 961 MPa for GR, 1,010 MPa for TP, and 1,037 MPa for TR). Conclusion: The use of different materials to fabricate a superstructure for a single implant-supported prosthesis did not affect the stress distribution in the supporting bone. The retention screw received less stress when a combination of porcelain and zirconia was used. Int J Oral Maxillofac Implants 2011;26:1202-1209

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractures of the mandibular angle deserve particular attention because they represent the highest percentage of mandibular fractures and have the highest postsurgical complication rate, making them the most challenging and unpredictable mandibular fractures to treat. Despite the evolution in the treatment of maxillofacial trauma and fixation methods, no single treatment modality has been revealed to be ideal for mandibular angle fractures. Several methods of internal fixation have been studied with great variation in complications rates, especially postoperative infections. Recently, new studies have shown reduction of postsurgical complications rates using three-dimensional plates to treat mandibular angle fractures. Nevertheless, only few surgeons have used this type of plate for the treatment of mandibular angle fractures. The aim of this clinical report was to describe a case of a patient with a mandibular angle fracture treated by an intraoral approach and a three-dimensional rectangular grid miniplate with 4 holes, which was stabilized with monocortical screws. The authors show a follow-up of 8 months, without infection and with occlusal stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the use of a collagen-based membrane compared with no treatment on guided bone regeneration by 3-dimensional computerized microtomography (mu CT).Study Design. Defects were created between the mesial and distal premolar roots of the second and third premolars (beagle dogs; n = 8). A collagen-based membrane (Vitala; Osteogenics Biomedical Inc., TX, USA) was placed in one of the defects (membrane group; n = 16), and the other was left untreated (no-membrane group; n = 16). Left and right sides provided healing samples for 2 and 16 weeks. Three-dimensional bone architecture was acquired by mu CT and categorized as fully regenerated (F, bone height and width) or nonregenerated (N).Results. Chi-square tests (95% level of significance) showed that tooth did not have an effect on outcome (P = .5). Significantly higher F outcomes were observed at 16 weeks than 2 weeks (P = .008) and in membrane group than in no-membrane group (P = .008).Conclusions. The collagen-based membrane influenced bone regeneration at the furcation. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:437-443)