52 resultados para Thermoluminescence dosimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microcontrolled instrument for measuring the energy fluence rate (or intensity) of X-ray pulses in the orthovoltage range of 120 to 300 kV is described. The prototype instrument consists of a pyroelectric sensor, a low-noise highsensitivity current-to-voltage converter, a microcontroller and a digital display. The response of the instrument is nonlinear with the intensity of the radiation. The precision is better than 3%. The equipment is inexpensive, rugged, simple to construct and has good long-term stability. © 2009 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost forty years computed tomography (CT) has been one of the most powerful tools in diagnostic imaging. However, this modality delivers relatively high doses to their patients. It is known that the inappropriate use and unnecessary radiation may be associated with a significant risk of cancer, especially in pediatric patients. Moreover, the quality assurance in CT, provided and required by Portaria 453/98 and the guide of the RE 1016/05, ensures that the images generated by computer tomography provide reliable diagnostic information with doses as low as reasonably achievable. This research aimed to make the quality control (QC) of CT equipment; establish a better relationship between dose and noise on the image to protocols of skull CT according to the study of optimization proposed in 2005 by Daros; and assess the dose distribution in different cranial organs for protocols of adult and pediatric use in the routine of the Department of Diagnostic Imaging of HCFMB-UNESP. The equipment used for testing QC, optimization and dosimetry was a third generation tomograph GE Sytec 3000i

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiotherapy is a field of medical physics, which has been going through a scientific and technological advancement, it is extreme important the professionals that work in this area continuous their study to improve the quality of service provided. For it, they should know the physical principles related as well their employment in radiotherapy. The electrons have been using in therapy of superficial tumors, because they show rapid decrease of dose in depth, they don’t expose the deeper tissues to radiation. The electron therapy has replaced the surface therapy with x-ray and mold brachytherapy, and nowadays, it represents 10 to 15% of radiotherapy treatments. This study brings the definition of physical parameters used in the dosimetry of electron beam, describes the tests for quality control of linear accelerator with a electrons beam, as well the activities realized in the Radiotherapy Division, of Hospital de Clinicas, in the Universidade Estadual of Campinas, in the Clinac 2100C machine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiotherapy is a multidisciplinary speciality which uses complex equipment and radiation sources for delivery of treatment, using high-energy ionizing radiation to treat cancer at several stages of complexity. Since radiation therapy is a technique which involves a precalculated radiation dose, it shall be established quality assurance programs that provide an efficient and safety treatment. The International Commission on Radiation Units and Measurements (ICRU) report No. 50 has recommended dose uniformity between 5% of the prescribed dose throughout the region of interest. This is one of the most primordial points that justify the importance of a suitable attendance of the equipments quality and performance. For quality control, the medical physicist will be involved with establishing and running a Quality Control Program (QCP). He must adapt or develop the procedures of equipment acceptance and commissioning, besides verifying the use of principles and accepted protocols of national and international reports to assure the correct quality, quantity, and placement of radiation during the performance of a radiological procedure, establishing adequate protocols to ensure accurate patient dosimetry. This present work consists of a description of the activities carried through the Sectors of Radiation Therapy of the Hospital of Clinics of the Campinas State University (Unicamp), particularly in the implementation of the Quality Control Program

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of a tumor with ionizing radiation is an ongoing process with well differentiated stages. These ones include the tumor diagnosis and location, the decision on the treatment strategy, the absorbed dose planning and calculation, the treatment administration, the absorbed dose verification and the evaluation of results in short and long terms. The quality of a radiotherapy procedure is closely linked to factors that may be classified as clinical, such as the diagnosis, the tumor location, the treatment strategy chosen and the continuous treatment reassessment; dosimetric or physical, such as the uncertainty in the dose calculation, its optimization and verification, the suitability of the equipment to provide a radiation beam consistent with the treatment planning; finally, others which are related to the practical application of radiotherapy treatment and the handling of the patient. In order to analyze the radiotherapy quality, one should realize that the three aspects (medical, physical or dosimetric and practical application) should be considered in a combined way. This means that numerous actions of the radiotherapists, medical physicists and technicians in radiotherapy should be held jointly and their knowledge level will significantly affect the treatment quality. In this study, the main physical parameters used in dosimetry are defined as well as determined experimentally for a linear accelerator Mevatron - MXT. With this, it is intended to provide recommendations for the physical aspects of Quality Assurance (QA) in the radiotherapy treatments, and these will usually be applied by professionals in Medical Physics. In addition to these instructions, it is recommended that additional texts are prepared to address in detail the clinical aspects of the treatments QA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study about the operation of the major system’s components of a linear particle acclerator (Linac). It addresses the components mainly responsible for the formation of the beam, through the inclusion of several block diagrams showing the details of the structure. Among the systems discussed may be mentioned the system modulator, automatic frequency control, dosimetry and auxiliary systems. The main objective is the dissemination of basic technology applied in linear accelerators and create literature about this subject in national language. Despite the high complexity and large number of devices that comprise a linear accelerator, it has been developed an easy to understand text that adresses the most relevant issues to the operation of the linear accelerator from the point of view of electrical engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In radiotherapy, computational systems are used for radiation dose determination in the treatment’s volume and radiometric parameters quality analysis of equipment and field irradiated. Due to the increasing technological advancement, several research has been performed in brachytherapy for different computational algorithms development which may be incorporated to treatment planning systems, providing greater accuracy and confidence in the dose calculation. Informatics and information technology fields undergo constant updating and refinement, allowing the use Monte Carlo Method to simulate brachytherapy source dose distribution. The methodology formalization employed to dosimetric analysis is based mainly in the American Association of Physicists in Medicine (AAPM) studies, by Task Group nº 43 (TG-43) and protocols aimed at dosimetry of these radiation sources types. This work aims to analyze the feasibility of using the MCNP-5C (Monte Carlo N-Particle) code to obtain radiometric parameters of brachytherapy sources and so to study the radiation dose variation in the treatment planning. Simulations were performed for the radiation dose variation in the source plan and determined the dosimetric parameters required by TG-43 formalism for the characterization of the two high dose rate iridium-192 sources. The calculated values were compared with the presents in the literature, which were obtained with different Monte Carlo simulations codes. The results showed excellent consistency with the compared codes, enhancing MCNP-5C code the capacity and viability in the sources dosimetry employed in HDR brachytherapy. The method employed may suggest a possible incorporation of this code in the treatment planning systems provided by manufactures together with the equipment, since besides reducing acquisition cost, it can also make the used computational routines more comprehensive, facilitating the brachytherapy ...