67 resultados para Theoretical density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical analysis based on the Hartree-Fock method were performed in order to study the stoichiometric TiO(2) (110) surface and the vanadium substituted system. The Pople with polarization 3-21G* basis set level was used. The TiO(2) (110) surface was modeled using a (TiO(2))(15) cluster model. In order to take into account the finite size of the cluster, we have studied two different models: the point charge and the hydrogen saturated methodologies. The charge values used in the point charge calculations were optimized. The density of states, orbital self-consistend field (SCF) energies, and Mulliken charge values were analyzed. The method and model's dependence on the analyzed results are discussed. The theoretical results are compared with available experimental data. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint experimental and theoretical study has been carried out to rationalize the results of visible photoluminescence measurements at room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the experimental side, ST thin films, x = 0 to 0.9, have been synthesized following soft chemical processing, and the corresponding photoluminescence properties have been measured. First principles quantum mechanical techniques, based on density functional theory at the B3LYP level, have been employed to study the electronic structure of a crystalline, stoichiometric (x = 0) ST-s model and a nonstoichiometric (SrO-deficient, x not equal 0) and structurally disordered ST-d model. The relevance of the present theoretical and experimental results of the photoluminescence behavior of ST is discussed. The optical spectra and the calculations indicate that the symmetry-breaking process on going from ST-s to ST-d creates electronic levels in the valence band. Moreover, an analysis of the Mulliken charge distribution reveals a charge gradient in the structure. These combined effects seem to be responsible for the photoluminescence behavior of deficient Sr1-xTiO3-x.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Generator Coordinate Hartree-Fock (GCHF) method is employed to design 16s, 16s10p, 24s17p13d, 25s17p13d, and 26s17p Gaussian basis sets for the H ((2)S), O ((3)P), O(2-) ((1)S), Cr(3+) ((4)F), Cr(4+) ((3)F), and Cr(6+) ((1)S) atomic species. These basis sets are then contracted to (4s) for H ((2)S), (6s4p) for O ((3)P), and O(2-) ((1)S), (986p3d) for Cr(3+) ((4)F), (10s8p3d) for Cr(4+) ((3)F), and (13s7p) for Cr(6+) (1S) by a standard procedure. For evaluation of the quality of those basis sets in molecular calculations, we have accomplished studies of total and orbital (HOMO and HOMO-1) energies at the HF-Roothaan level for the molecular species of our interest. The results obtained with the contracted basis sets are compared to the values obtained with our extended basis sets and to the standard 6-311G basis set from literature. Finally, the contracted basis sets are enriched with polarization function and then utilized in the theoretical interpretation of IR-spectrum of hexaaquachromium (III) ion, [Cr(H(2)O)(6)](3+), tetraoxochromium (IV) ion, [CrO(4)](4-), and tetraoxochromium (VI) ion, [CrO(4)](2-). The respective theoretical harmonic frequencies and IR-intensities were computed at the density functional theory (DFT) level. In the DFT calculations we employed the Becke's 1988 functional using the LYP correlation functional. The comparison between the results obtained and the corresponding experimental values indicates a very good description of the IR-spectra of the molecular ions studied, and that the GCHF method is still a legitimate alternative for selection of Gaussian basis sets. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong photoluminescent emission has been measured at room temperature for noncrystalline BaT'O-3 (BT) perovskite powders. A joint experimental and theoretical study has been carried out to rationalize this phenomenon. From the experimental side, BT powder samples have been synthesized following a soft chemical processing, their crystal structure has been confirmed by x-ray data and the corresponding photoluminescence (PL) properties have been measured. Only the structurally disordered samples present PL at room temperature. From the theoretical side, first-principles quantum-mechanical techniques, based on density-functional theory at the B3LYP level, have been employed to study the electronic structure of crystalline (BT-c) and asymmetric (BT-a) models. Theoretical and experimental results are found to be consistent and their confrontation leads to an interpretation of the PL apparition at room temperature in the structurally disordered powders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint experimental and theoretical study has been carried out to rationalize for the first time the photoluminescence (PL) properties of disordered CaWO4 (CWO) thin films. From the experimental side, thin films of CWO have been synthesized following a soft chemical processing, their structure has been confirmed by X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. Although we observe PL at room temperature for the crystalline thin films, the structurally disordered samples present much more intense emission. From the theoretical side, first principles quantum mechanical calculations, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (CWO-c) and asymmetric (CWO-a) periodic model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of CWO is discussed. The symmetry breaking process on going from CWO-c to CWO-a creates localized electronic levels above the valence band and a negative charge transfer process takes place from threefold, WO3, to fourfold, WO4,. tungsten coordinations. The correlation of both effects seems to be responsible for the PL of amorphous CWO. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine PbZr0.20Ti0.80O3 was omorphized through high-energy mechanical milling. The structural evolution through the omorphization process was accompanied by various characterization techniques, such as X-ray diffraction, Fourier-transformed IR spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. A strong photoluminescence was measured at room temperature for amorphized PbZr0.20Ti0.80O3, and interpreted by means of high-level quantum mechanical calculations in the density functional theory frame-work. Three periodic models were used to represent the crystalline and amorphized PbZr0.20Ti0.80O3, and they allowed the calculation of electronic properties that are consistent with the experimental data and that explain the appearance of photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report an experimental and theoretical study based on a periodic density functional investigation into selected compositions of Pb1-xCaxTiO3 (x=0.0, 0.25, 0.50, and 0.75). Based on our findings, we propose that the pseudocubic structure of these perovskites presents a long-range tendency for cubic symmetry, while the short-range displacements bring the solid solution to a tetragonal symmetry. The results are discussed in terms of x-ray diffraction, structural optimized parameters, Raman spectroscopy, band structure, density of states, Mulliken charge, and overlap population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine ordered and disordered SrZrO3 powders were prepared by the polymeric precursor method. The structural evolution from structural disorder to order was monitored by X-ray diffraction and X-ray absorption near-edge spectroscopy. Complex cluster vacancies [ZrO5 center dot V-O(Z)] and [SrOII center dot V-O(Z)] (where V-O(Z) = V-O(X), V-O(center dot) and V-O(center dot center dot)) were proposed for disordered powders. The intense violet-blue light photoluminescence emission measured at room temperature in the disordered powders was attributed to complex cluster vacancies. High-level quantum mechanical calculations within the density functional theory framework were used to interpret the experimental results. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense and broad photoluminescence (PL) emission at room temperature was observed on structurally disordered Ba[Zr0.25Ti0.75]O-3 (BZT) powders synthesized by the polymeric precursor method. BZT powders were annealed at 573 K for different times and at 973 K for 2 h in oxygen atmosphere. The single-phase cubic perovskite structure of the powder annealed at 973 K for 2 It was identified by X-ray diffraction and Fourier transform Raman techniques. PL emission increased with the increase of annealing time, which reached its maximum value in the powder annealed at 573 K for 192 h. First principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered models. The theoretical calculations and experimental measurements of Ultraviolet-visible absorption spectroscopy indicate that the presence of intermediary energy levels in the band gap is favorable for the intense and broad PL emission at room temperature in disordered BZT powders. The PL behavior is probably due the existence of a charge gradient on the disordered structure, denoted by means of a charge transfer process from [TiO5]-[ZrO6] or [TiO6]-[ZrO5] clusters to [TiO6]-[ZrO6] clusters. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states ((1)A(1)/(3)A '') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ ((1)Sigma/(3)Sigma); formation of propynaldehyde and the moiety V-(OH2)(+); and two elimination processes of water molecule to yield cationic products, Prod-fc(+) and Prod-dc(+) where the vanadium atom adopts a four- and di-coordinate structure, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we studied the photocatalytic and the structural aspects of silicon wafers doped with Au and Cu submitted to thermal treatment. The materials were obtained by deposition of metals on Si using the sputtering method followed by fast heating method. The photocatalyst materials were characterized by synchrotron-grazing incidence X-ray fluorescence, ultraviolet-visible spectroscopy, X-ray diffraction, and assays of H(2)O(2) degradation. The doping process decreases the optical band gap of materials and the doping with Au causes structural changes. The best photocatalytic activity was found for thermally treated material doped with Au. Theoretical calculations at density functional theory level are in agreement with the experimental data.