65 resultados para Taxi GPS data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To prevent large errors in the GPS positioning, cycle slips should be detected and corrected. Such procedure is not trivial, mainly for single frequency receivers, but normally it is not noticed by the users. Thus, it will be discussed some practical and more used methods for cycle slips detection and correction using just GPS single-frequency observations. In the detection, the triple (TD) and tetra differences were used. In relation to the correction, in general, each slip is corrected in the preprocessing. Otherwise, other strategies should be adopted during the processing. In this paper, the option was to the second option, and two strategies were tested. In one of them, the elements of the covariance matrix of the involved ambiguities are modified and new ambiguity estimation starts. In the one, a new ambiguity is introduced as additional unknown when a cycle slip is detected. These possibilities are discussed and compared in this paper, as well as the aspects related to the practicity, implementation and viability of each one. Some experiments were carried out using simulated data with cycle slips in different satellites and epochs of the data. This allowed assessing and comparing the results of different occurrence of cycle slip and correction in several conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main target here is to determine the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms implemented through sequential Givens rotations as a method of estimation, with the aim of improving the performance of the orbit estimation process and, at the same time, minimizing the computational procedure cost. Geopotential perturbations up to high order and direct solar radiation pressure were taken into account. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. An application has been done, using real data from the Topex/Poseidon satellite, whose ephemeris is available at Internet. The best accuracy obtained in position was smaller than 5 meters for short period (2 hours) and smaller than 28 meters for long period (24 hours) orbit determination. In both cases, the perturbations mentioned before were taken into consideration and the analysis occurred without selective availability on the signals measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-cost computer procedure to determine the orbit of an artificial satellite by using short arc data from an onboard GPS receiver is proposed. Pseudoranges are used as measurements to estimate the orbit via recursive least squares method. The algorithm applies orthogonal Givens rotations for solving recursive and sequential orbit determination problems. To assess the procedure, it was applied to the TOPEX/POSEIDON satellite for data batches of one orbital period (approximately two hours), and force modelling, due to the full JGM-2 gravity field model, was considered. When compared with the reference Precision Orbit Ephemeris (POE) of JPL/NASA, the results have indicated that precision better than 9 m is easily obtained, even when short batches of data are used. Copyright (c) 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss a method of preliminary orbit determination for an artificial satellite based on the navigation message of the GPS constellation. Orbital elements are considered as state variables and a simple dynamic model, based on the classic two-body problem, is used. The observations are formed by range and range and range-rate with respect to four visible GPS. A discrete Kalman filter with simulated data is used as filtering technique. The data are obtained through numerical propagation (Cowell's method), which considers special perturbations for the GPS satellite constellation and a user satellite. © 1997 COSPAR. Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic errors can have a significant effect on GPS observable. In medium and long baselines the major systematic error source are the ionosphere and troposphere refraction and the GPS satellites orbit errors. But, in short baselines, the multipath is more relevant. These errors degrade the accuracy of the positioning accomplished by GPS. So, this is a critical problem for high precision GPS positioning applications. Recently, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique. It uses a natural cubic spline to model the errors as a function which varies smoothly in time. The systematic errors functions, ambiguities and station coordinates, are estimated simultaneously. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The error associated with the ionosphere depends on Total Electron Content (TEC) of the ionosphere. The geomagnetic field exerts strong influence in the TEC variation, because it controls the movement of the electrons. After solar events the magnetic lines of force can be compressed, characterizing the geomagnetic storm. The aim of this paper is to present to geodesic community the effects of a geomagnetic storm in the relative positioning. The processing of the data was accomplished with an interval of two hours, with a 430 km baseline. The analyze of the obtained results have been carried out from the discrepancies between the true coordinates and corresponding ones obtained in the processing of the baseline. The used data in this paper include the period of 30/03/2001 up to 02/04/2001. In March 31 a strong geomagnetic storm happened. One day after, that it corresponds to main phase of the storm, the values of the discrepancies decreased significantly. For instance, in 01:00-03:00 UT period, the value of the planimetric discrepancy reached 20 m in the storm day. However, in the main phase of the storm, the planimetric discrepancy decreased to 0.1 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the positioning systems that compose GNSS (Global Navigation Satellite System), GPS has the capability of providing low, medium and high precision positioning data. However, GPS observables may be subject to many different types of errors. These systematic errors can degrade the accuracy of the positioning provided by GPS. These errors are mainly related to GPS satellite orbits, multipath, and atmospheric effects. In order to mitigate these errors, a semiparametric model and the penalized least squares technique were employed in this study. This is similar to changing the stochastical model, in which error functions are incorporated and the results are similar to those in which the functional model is changed instead. Using this method, it was shown that ambiguities and the estimation of station coordinates were more reliable and accurate than when employing a conventional least squares methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integer carrier phase ambiguity resolution is the key to rapid and high-precision global navigation satellite system (GNSS) positioning and navigation. As important as the integer ambiguity estimation, it is the validation of the solution, because, even when one uses an optimal, or close to optimal, integer ambiguity estimator, unacceptable integer solution can still be obtained. This can happen, for example, when the data are degraded by multipath effects, which affect the real-valued float ambiguity solution, conducting to an incorrect integer (fixed) ambiguity solution. Thus, it is important to use a statistic test that has a correct theoretical and probabilistic base, which has became possible by using the Ratio Test Integer Aperture (RTIA) estimator. The properties and underlying concept of this statistic test are shortly described. An experiment was performed using data with and without multipath. Reflector objects were placed surrounding the receiver antenna aiming to cause multipath. A method based on multiresolution analysis by wavelet transform is used to reduce the multipath of the GPS double difference (DDs) observations. So, the objective of this paper is to compare the ambiguity resolution and validation using data from these two situations: data with multipath and with multipath reduced by wavelets. Additionally, the accuracy of the estimated coordinates is also assessed by comparing with the ground truth coordinates, which were estimated using data without multipath effects. The success and fail probabilities of the RTIA were, in general, coherent and showed the efficiency and the reliability of this statistic test. After multipath mitigation, ambiguity resolution becomes more reliable and the coordinates more precise. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to evaluate the quality of the pseudorange observables generated for a Virtual Reference Station (VRS). In order to generate the VRS data three different approaches were implemented and tested. In the first one, raw data from the reference station network were used while in the second it was based on double difference reference station corrections. Finally, in the third approach atmospheric models (ionosphere and troposphere) were used to create the VRS data. Sao Paulo State Network stations were used in all experiments. The VRS data were generated in a reference station position of known coordinates (real file). In order to validate the approaches, the VRS data were compared with the real data file. The results were quite similar, reaching the decimeter or centimeter level, depending on the approach applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The land question has been a widely discussed topic in Brazil, regarding land tenure. Law No. 10.267/01 was a major breakthrough for the agrarian issue. Since then on all rural properties must be georeferenced to the Brazilian Geodetic System (BGS). Therefore, satellite positioning and conventional methods are extensively used. Changes have been occurring in satellite positioning systems due to the addition of new signals in GPS (Global System Positioning), restructuring of GLONASS (Global Orbiting Navigation Satellite System), and the new systems like Galileo and Compass as well. To evaluate the effects of combining GPS and GLONASS data, several batches of processings were performed on different configurations. The data processing was performed to determine the coordinates of points of basic support and those materializing the neighborhood of the rural properties. As a result, it was found that the use of accurate ephemeris in transporting coordinates to support points has no significant influence, since transportation with broadcast ephemeris also meets the accuracy requirements for the Standard Technique for Georreferencing Rural Properties. On the other hand, when GPS and GLONASS data were used, such combination provides the best results. In the case of neighboring points, the use of GPS and GLONASS data is also recommended because such data meet the precision requirement and showed better results than those from where data were processed separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)