35 resultados para Sun protection factor
Resumo:
The energy efficiency of buildings should be a goal at the pre-design phase, though the importance of the design variables is often neglected even during the design process. Highlighting the relevance of these design variables, this research studies the relationships of building location variables with the electrical energy consumption of residential units. The following building design parameters are considered: orientation, story height and sky view factor (SVF). The consideration of the SVF as a location variable contributes to the originality of this research. Data of electrical energy consumption and users' profiles were collected and several variables were considered for the development of an Artificial Neural Network model. This model allows the determination of the relative importance of each variable. The results show that the apartments' orientation is the most important design variable for the energy consumption, although the story height and the sky view factor play a fundamental role in that consumption too. We pointed out that building heights above twenty-four meters do not optimize the energy efficiency of the apartments and also that an increasing SVF can influence the energy consumption of an apartment according to their orientation.
Resumo:
A Fault Current Limiter (FCL) based on high temperature superconducting elements with four tapes in parallel were designed and tested in 220 V line for a fault current peak between 1 kA to 4 kA. The elements employed second generation (2G) HTS tapes of YBCO coated conductor with stainless steel reinforcement. The tapes were electrically connected in parallel with effective length of 0.4 m per element (16 elements connected in series) constituting a single-phase unit. The FCL performance was evaluated through over-current tests and its recovery characteristics under load current were analyzed using optimized value of the shunt protection. The projected limiting ratio achieved a factor higher than 4 during fault of 5 cycles without degradation. Construction details and further test results will be shown in the paper. © 2010 IOP Publishing Ltd.
Resumo:
Although melatonin is mainly produced by the pineal gland, an increasing number of extra-pineal sites of melatonin synthesis have been described. We previously demonstrated the existence of bidirectional communication between the pineal gland and the immune system that drives a switch in melatonin production from the pineal gland to peripheral organs during the mounting of an innate immune response. In the present study, we show that acute neuroinflammation induced by lipopolysaccharide (LPS) injected directly into the lateral ventricles of adult rats reduces the nocturnal peak of melatonin in the plasma and induces its synthesis in the cerebellum, though not in the cortex or hippocampus. This increase in cerebellar melatonin content requires the activation of nuclear factor kappa B (NF-κB), which positively regulates the expression of the key enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT). Interestingly, LPS treatment led to neuronal death in the hippocampus and cortex, but not in the cerebellum. This privileged protection of cerebellar cells was abrogated when G-protein-coupled melatonin receptors were blocked by the melatonin antagonist luzindole, suggesting that the local production of melatonin protects cerebellar neurons from LPS toxicity. This is the first demonstration of a switch between pineal and extra-pineal melatonin production in the central nervous system following a neuroinflammatory response. These results have direct implications concerning the differential susceptibility of specific brain areas to neuronal death.
Resumo:
Notwithstanding the solar radiation is recognized as a detrimental factor to the thermal balance and responses of animals on the range in tropical conditions, studies on the amount of thermal radiation absorbed by goats therein associated with data on their production and heat exchange are still lacking. Metabolic heat production and the heat exchange of goats in the sun and in the shade were measured simultaneously, aiming to observe its thermal equilibrium. The results showed that black goats absorb twice as much as the white goats under intense solar radiation (higher than 800 W m(-2)). This observation leads to a higher surface temperature of black goats, but it must not be seen as a disadvantage, because they increase their sensible heat flow in the coat-air interface, especially the convection heat flow at high wind speeds. In the shade, no difference between the coat colours was observed and both presented a lower absorption of heat and a lower sensible heat flow gain. When solar radiation levels increases from 300 to 1000 W m(-2), we observed an increase of the heat losses through latent flow in both respiratory and cutaneous surface. Cutaneous evaporation was responsible for almost 90 % of the latent heat losses, independently of the coat colour. Goats decrease the metabolic heat production under solar radiation levels up to 800 W m(-2), and increase in levels higher than this, because there is an increase of the respiratory rate and of the respiratory flow, but the fractions of consumed oxygen and produced carbon dioxide are maintained stable. The respiratory rate of black goats was higher than the white ones, under 300 W m(-2) (55 and 45 resp min(-1)) and 1000 W m(-2) (120 and 95 resp min(-1), respectively). It was concluded that shade or any protection against solar radiation levels above 800 Wm(-2) is critical to guarantee goat's thermal equilibrium. Strategies concerning the grazing period in accordance with the time of the day alone are not appropriate, because the levels of radiation depend on the latitude of the location.
Resumo:
This study evaluated the genetic erosion risk factors and the strategic points for the conservation of Lychnophora ericoides population in “Paraíso Perdido” farm, Serra da Canastra (20° 37’ 54” S; 46° 19’ 37” W; 833 m height) in São João Batista do Glória City, Minas Gerais State, Brazil. The number of young and adult plants, the soil and the phenology were evaluated in two sample areas of 125 m2. Information about the species utilization was obtained with local informants. Data on the region were obtained through literature review, in loco evaluation, GPS and geo-referenced map. In addition, local use of the plant for mixtures of drug was evaluated. According to the results obtained, the soil of the population is lithic with a weathered portion of frank-sandy texture, very acidic and dystrophic. The population density is 0.16 individuals/m2, 0.078 young/adult plant. The predominant phenophase was fruiting (100% plants) followed by flowering (21.62% plants). The local community uses the leaves of the plant in the form of hydroalcoholic extracts, as anti-inflammatory. Based on the evaluated parameters, the population is at 73% risk of genetic erosion. The detected key points were the development of activities including the participation of the local community for habitat protection as well as germplasm collection, seedlings production and reintroduction, together with environmental education, supervision, and reduction in the propensity for fire.