38 resultados para Stochastic simulators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega(GW)(f) = Omega(alpha)(f/f(ref))(alpha), we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha = 0, we constrain the energy density of the stochastic background to be Omega(GW)(f) < 5.6 x 10(-6). For the 600-1000 Hz band, Omega(GW)(f) < 0.14(f/900 Hz)(3), a factor of 2.5 lower than the best previously reported upper limits. We find Omega(GW)(f) < 1.8 x 10(-4) using a spectral index of zero for 170-600 Hz and Omega(GW)(f) < 1.0(f/1300 Hz)(3) for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex non-linear interactions between banks and assets we model by two time-dependent Erdos-Renyi network models where each node, representing a bank, can invest either to a single asset (model I) or multiple assets (model II). We use a dynamical network approach to evaluate the collective financial failure -systemic risk- quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided into sub-periods, where within each sub-period banks may contiguously fail due to links to either i) assets or ii) other banks, controlled by two parameters, probability of internal failure p and threshold T-h ("solvency" parameter). The systemic risk decreases with the average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller T-h), the smaller the systemic risk -for some Th values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic ii) controlled by probability p(2) -a condition for the bank to be solvent (active) is stochasticthe- systemic risk decreases with decreasing p(2). We analyse the asset allocation for the U.S. banks. Copyright (C) EPLA, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA