43 resultados para Stair Nested Designs
Resumo:
This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.
Resumo:
Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.
Resumo:
Reusable cardboard boxes can be ergonomically designed for internal transportation of dry products in industrial settings. In this study we compared the effects of handling a regular commercial box and two cardboard prototypes on upper limb postures through the evaluation of movements, myoelectrical activity, perceived grip acceptability and capacity for reuse. The ergonomic designs provided a more acceptable grip, safer wrist and elbow movements and lower wrist extensors and biceps activity. Biomechanical disadvantages were observed only for one of the prototypes when handling to high surface. The prototypes were durable and suitable for extensive reuse (more than 2000 handlings) in internal industrial transportation. Despite being slightly more expensive than regular cardboard, the prototypes showed good cost-benefit considering their high durability. Relevance to industry: Cardboard boxes can be efficiently redesigned for allowing safer upper limb movements and lower muscle workload in manual materials handling. New designs can also be extensively reused for internal industrial transportation with good cost-benefit. © 2012 Elsevier B.V.
Resumo:
Objectives: The stair-climbing test as measured in meters or number of steps has been proposed to predict the risk of postoperative complications. The study objective was to determine whether the stair-climbing time can predict the risk of postoperative complications. Methods: Patients aged more than 18 years with a recommendation of thoracotomy for lung resection were included in the study. Spirometry was performed according to the criteria by the American Thoracic Society. The stair-climbing test was performed on shaded stairs with a total of 12.16 m in height, and the stair-climbing time in seconds elapsed during the climb of the total height was measured. The accuracy test was applied to obtain stair-climbing time predictive values, and the receiver operating characteristic curve was calculated. Variables were tested for association with postoperative cardiopulmonary complications using the Student t test for independent populations, the Mann-Whitney test, and the chi-square or Fisher exact test. Logistic regression analysis was performed. Results: Ninety-eight patients were evaluated. Of these, 27 showed postoperative complications. Differences were found between the groups for age and attributes obtained from the stair-climbing test. The cutoff point for stair-climbing time obtained from the receiver operating characteristic curve was 37.5 seconds. No differences were found between the groups for forced expiratory volume in 1 second. In the logistic regression, stair-climbing time was the only variable associated with postoperative complications, suggesting that the risk of postoperative complications increases with increased stair-climbing time. Conclusions: The only variable showing association with complications, according to multivariate analysis, was stair-climbing time. © 2013 by The American Association for Thoracic Surgery.
Resumo:
A finite element analysis was used to compare the effect of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible. Four models of an human mandible were constructed. In the OR (O'ring) group, the mandible was restored with an overdenture retained by four unsplinted implants with O'ring attachment; in the BC (bar-clip) -C and BC groups, the mandibles were restored with overdentures retained by four splinted implants with bar-clip anchor associated or not with two distally placed cantilevers, respectively; in the FD (fixed denture) group, the mandible was restored with a fixed full-arch four-implant-supported prosthesis. Models were supported by the masticatory muscles and temporomandibular joints. A 100-N oblique load was applied on the left first molar. Von Mises (σvM), maximum (σmax) and minimum (σmin) principal stresses (in MPa) analyses were obtained. BC-C group exhibited the highest stress values (σvM=398.8, σmax=580.5 and σmin=-455.2) while FD group showed the lowest one (σvM=128.9, σmax=185.9 and σmin=-172.1). Within overdenture groups, the use of unsplinted implants reduced the stress level in the implant/prosthetic components (59.4% for σvM, 66.2% for σmax and 57.7% for σmin versus BC-C group) and supporting tissues (maximum stress reduction of 72% and 79.5% for σmax, and 15.7% and 85.7% for σmin on the cortical and trabecular bones, respectively). Cortical bone exhibited greater stress concentration than the trabecular bone for all groups. The use of fixed implant dentures and removable dentures retained by unsplinted implants to rehabilitate edentulous mandible reduced the stresses in the periimplant bone tissue, mucosa and implant/prosthetic components. © 2013 Elsevier Ltd.
Resumo:
The use of saturated two-level designs is very popular, especially in industrial applications where the cost of experiments is too high. Standard classical approaches are not appropriate to analyze data from saturated designs, since we could only get the estimates of the main factor effects and we would not have degrees of freedom to estimate the variance of the error. In this paper, we propose the use of empirical Bayesian procedures to get inferences for data obtained from saturated designs. The proposed methodology is illustrated assuming a simulated data set. © 2013 Growing Science Ltd. All rights reserved.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Onset of quadriceps and torque variation in individuals with patellofemoral pain during stair ascent
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Stair climbing is a functional activity often cited as main complaint by patients with orthopedic – as patellofemoral pain syndrome – or neurologic alterations. Moreover, the stair climbing is usually used as therapeutic resource. However, few studies have been conducted to characterize the movement during the ascent or descent of stairs and these studies concluded that the high variability of the data could not confirm the results [Yu, 1997] . In this way, this study aimed to verify which parameters show less variation and so, are more appropriate to characterize the stair climbing.