37 resultados para Spinal mobilization
Resumo:
The aim of this study is to analyze the impact of food shortage on growth performance, by means of energetic reserves (proteins, glycogen and lipids) mobilization and hepatopancreas cells analysis in C. quadricarinatus juveniles maintained in groups, as well as the effect on culture water quality. Two experiments were performed, each of them with two feeding regimes during 45 days. The Control feeding regime, in which crayfish were fed daily (once a day) throughout the experimental period (DF), and the Cyclic feeding regime, in which juveniles were fed for 2 or 4 days (once a day) followed by 2 or 4 days of food deprivation (2F/2D and 4F/4D, respectively) in repeated cycles. Cyclic feeding influenced growth, biochemical composition from hepatopancreas and muscle, and water quality. Juveniles cyclically fed were unable to maintain a normal growth trajectory during 45 days. Apparent feed conversion ratio, apparent protein efficiency ratio, hepatosomatic index and relative pleon mass were similar in cyclic and daily fed animals and no structural damage was found in the hepatopancreas of juveniles subjected to cyclic feeding. The novelty of this study was the significant accumulation of proteins in pleonal muscle in both cyclic feeding regimes (approx. 18%) suggesting that the storage of this constitutive material during food shortage may be an adaptation for a compensatory growth when food becomes abundant again. The cyclic feeding regimes had a positive effect on water quality decreasing inorganic nitrogen concentration. This was due to the reduction in the amount of animal excretes and feces in the group that received approx. 50% less feed. Additionally, water pH was higher in cyclic feeding tanks, as a result of lower organic matter decomposition and consequent release of CO2. Accordingly, total ammonia in the water was significantly lower for the cyclic feeding regimes compared to their respective controls. This study suggests that the protocol of cyclic feeding could be applied at least 45 days in 1 g juveniles maintained in group conditions, without affecting the energetic reserves and hepatopancreas structure, emphasizing the high tolerance of this species to food restriction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Acute spinal cord trauma is a common injury that occurs frequently in small animals. In order to acertain a prognosis of the lesion generated in the spinal cord, it is necessary to perform a complete neurological and physical examination, aided by complementary images. Magnetic resonance imaging may be advantageous over other types of images, because it can determine with greater definition the structural damage to the nervous tissue. The objective of this report was to demonstrate the contribution of magnetic resonance imaging in a case of acute spinal cord trauma in a dog.
Resumo:
The aim of this work was to analyze the neuron morphology and morphometry of cervical, thoracic and lumbar areas of nonsymptomatic seropositive dogs’ spinal cord for toxoplasmosis. Twenty indefinite-breed adult dogs were used; ten dogs were healthy, with negative serology for toxoplasmosis, and were used as the control group (group 1), and ten dogs were nonsymptomatic but seropositive for toxoplasmosis (group 2). After the microtomy, with interval of 100 micrometers (µm), the histological 5-µm-thick cuts were dyed by hematoxylin-eosin and Masson's trichrome techniques. The glass slides were analyzed under light microscope to examine the neuron morphology. The parameters considered for the morphometric analysis were area, perimeter, maximum diameter, minimum diameter and shape factor of cytoplasm and nucleus of neuron. The results were statistically analyzed by Student’s t test at 5% probability level. The morphological characteristics between the two groups were similar and according to literature. The morphometric results showed that there were changes in neurons size and structure, and increase and loss of star shape were noticed in seropositive animals. The results suggest that the neurons of these dogs, yet nonsymptomatic, can have lost their conductor function.
Resumo:
Cell therapy has frequently been reported as a possible treatment for spinal trauma in humans and animals; however, without pharmacologically curative action on damage from the primary lesion. In this study, we evaluated the effect of administering human adipose-derived stem cells (hADSC) in rats after spinal cord injury. The hADSC were used between the third and fifth passages and a proportion of cells were transduced for screening in vivo after transplantation. Spinal cord injury was induced with a Fogarty catheter no. 3 inserted into the epidural space with a cuff located at T8 and filled with 80 mu L saline for 5 min. The control group A (n = 12) received culture medium (50 mu L) and group B (n = 12) received hADSC (1.2 x 10(6)) at 7 and 14 days post-injury, in the tail vein. Emptying of the bladder by massage was performed daily for 3 months. Evaluation of functional motor activity was performed daily until 3 months post-injury using the Basso-Beattie-Bresnahan scale. Subsequently, the animals were euthanized and histological analysis of the urinary bladder and spinal cord was performed. Bioluminescence analysis revealed hADSC at the application site and lungs. There was improvement of urinary bladder function in 83.3% animals in group B and 16.66% animals in group A. The analysis of functional motor activity and histology of the spinal cord and urinary bladder demonstrated no significant difference between groups A and B. The results indicate that transplanted hADSC improved urinary function via a telecrine mechanism, namely action at a distance.
Resumo:
Although there is no documented evidence that tattoo pigments can cause neurological complications, the implications of performing neuraxial anesthesia through tattooed skin are unknown. In this study, we aimed to assess whether spinal puncture performed through tattooed skin of rabbits determines changes over the spinal cord and meninges. In addition, we sought to evaluate the presence of ink fragments entrapped in spinal needles. Thirty-six young male adult rabbits, each weighing between 3400 and 3900 g and having a spine length between 38.5 and 39 cm, were divided by lot into 3 groups as follows: GI, spinal puncture through tattooed skin; GII, spinal puncture through tattooed skin and saline injection; and GIII, spinal puncture through skin free of tattoo and saline injection. After intravenous anesthesia with ketamine and xylazine, the subarachnoid space was punctured at S1-S2 under ultrasound guidance with a 22-gauge 2½ Quincke needle. Animals in GII and GIII received 5 μL/cm of spinal length (0.2 mL) of saline intrathecally. In GI, the needle tip was placed into the yellow ligament, and no solution was injected into the intrathecal space; after tattooed skin puncture, 1 mL of saline was injected through the needle over a histological slide to prepare a smear that was dyed by the Giemsa method to enable tissue identification if present. All animals remained in captivity for 21 days under medical observation and were killed by decapitation. The lumbosacral spinal cord portion was removed for histological analysis using hematoxylin-eosin stain. None of the animals had impaired motor function or decreased nociception during the period of clinical observation. None of the animals from the control group (GIII) showed signs of injuries to meninges. In GII, however, 4 animals presented with signs of meningeal injury. The main histological changes observed were focal areas of perivascular lymphoplasmacyte infiltration in the pia mater and arachnoid. There was no signal of injury in neural tissue in any animal of both groups. Tissue coring containing ink pigments was noted in all GI smears from the spinal needles used to puncture the tattooed skin. On the basis of the present results, intrathecal injection of saline through a needle inserted through tattooed skin is capable of producing histological changes over the meninges of rabbits. Ink fragments were entrapped inside the spinal needles, despite the presence of a stylet.