60 resultados para Spherical Geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the geometric treatment done for the Majorana-Weyl fermions in two dimensions by Sanielevici and Semenoff to chiral bosons on a circle. For this case we obtain a generalized Floreanini-Jackiw Lagrangian density, and the corresponding gravitational (or Virasoro) anomalies are found as expected. © 1989 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of spherical Y2O2S and Y2O2S:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated. The precursors, undoped and doped yttrium basic carbonates, are synthesized by aging a stock solution containing the respective cation chloride and urea at 82-84 °C. Y2O2S and Y2O2S:Eu were characterized in terms of their composition, crystallinity and morphology by chemical analysis, X-ray powder diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The Eu-doped oxysulfide was also characterized by atomic absorption spectrophotometry and luminescence spectroscopy. The spherical morphology of oxysulfide products and of basic carbonate precursors suggests a topotatic inter-relationship between both compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes. © SISSA/ISAS 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, using the apparatus of the Clifford bundle formalism, we show how straightforwardly solve in Minkowski space-time the Dirac-Hestenes equation - which is an appropriate representative in the Clifford bundle of differential forms of the usual Dirac equation - by separation of variables for the case of a potential having spherical symmetry in the Cartesian and spherical gauges. We show that, contrary to what is expected at a first sight, the solution of the Dirac-Hestenes equation in both gauges has exactly the same mathematical difficulty. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1 °in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (∼0.20 μm). Probable adiabatic shear occurred on chip segmentation at HSC Copyright © 2007 by ABCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we show the expressions of the gravitational potential of homogeneous bodies with non-spherical three-dimensional shapes in order to study the trajectories around these bodies. The potentials of a prolate and an oblate ellipsoids with different values of semi-major axis are presented. Their results are validated with a test using a spherical body in order to guarantee the approximation of any body as a polyhedral model of the body. With these expressions we study trajectories of a point of mass around the three-dimensional bodies and the results indicated that there is a group of orbits around those bodies and the polyhedral form of the object does work very well. Copyright IAF/IAA. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a new approach for thermal lens analysis using a two-wavelength DSPI (Digital Speckle Pattern Interferometry) setup for wavefront sensing. The employed geometry enables the sensor to detect wavefronts with small phase differences and inherent aberrations found in induced lenses. The wavefronts was reconstructed by four-stepping fringe evaluation and branch-cut unwrapping from fringes formed onto a diffusive glass. Real-time single-exposure contour interferograms could be obtained in order to get discernible and low-spacial frequency contour fringes and obtain low-noise measurements. In our experiments we studied the thermal lens effect in a 4% Er-doped CaO-Al2O3 glass sample. The diode lasers were tuned to have a contour interval of around 120 μm. The incident pump power was longitudinally and collinearly oriented with the probe beams. Each interferogram described a spherical-like wavefront. Using the ABCD matrix formalism we obtained the induced lens dioptric power from the thermal effect for different values of absorbed pump power. © 2012 Copyright SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain an explicit cellular decomposition of the quaternionic spherical space forms, manifolds of positive constant curvature that are factors of an odd sphere by a free orthogonal action of a generalized quaternionic group. The cellular structure gives and explicit description of the associated cellular chain complex of modules over the integral group ring of the fundamental group. As an application we compute the Whitehead torsion of these spaces for any representation of the fundamental group. © 2012 Springer Science+Business Media B.V.