277 resultados para Specific soil management
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In Brazil the intensive agriculture use, mainly pasture, is the main cause of the presence of extensive areas of degraded lands. This study aimed to assess the impact of different soil management practices in a pasture degraded area used as garbage disposal. The experiment was performed at the Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas - UNICAMP, in Campinas, state of São Paulo, Brazil, from 1990 to 1996. This area has undergone a process of recovery through removal of trash deposited on the surface, in 1985, levelling of soil, followed by application of limestone, subsoiling, planting of legumes (Crotalaria juncea) and crop rotation (soybean and maize). Since 1990 only popcorn maize was grown and established plots managed with different soil tillage systems, including harrow, chisel plow, moldboard plow, no tillage, disk plow and revolving hoe. One plot was planted exclusively with guinea grass (Panicum maximum) to serve as a reference for minimum loss of soil and another grown on a downhill direction to correspond to the expected maximum erosion. There were differences in sediment loss, nutrient loss and productivity of the popcorn maize in the period analyzed. The chisel plow and no tillage treatments caused the slightest loss of soil and nutrients, compared to other tillage systems. The results show that the soil management systems influenced the physical and chemical characteristics of soil, allowing an economical and environmental recovery of the area, providing the conditions for grain agricultural production.
Resumo:
Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.
Resumo:
Soil tillage and other methods of soil management may influence CO 2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO 2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period. © 2013 IOP Publishing Ltd.
Resumo:
The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.
Resumo:
Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.
Resumo:
For many years, composting has been used as a result of the recycling of organic matter. There is significative animal carcasses accumulation from teaching and researching activities of the university veterinary hospital. Every year, Unesp University needs to dispose correctly about 180 tones of this waste and the composting seemed to be the most sustainable alternative. Piles of animal carcasses were prepared using peanut hulls and tree pruning as bulking agent and water to the first phase of this process. The extracts pH values no impediments for offering germination and indicated a good addition to the soil management. The germination index showed no impediment to the seeds germination on any type of compost and the extracts concentrations not influenced this biological process. No parameters studied assigns risks of contamination of carcasses for the compost development in Unesp according to the proposed design. © 2013 Taylor & Francis Group.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The correct spatial intervention in the administration of the plantation, arising from specific areas of soil mapping, can increase your productivity as well as profitability and yields in agriculture. The spatial and Pearson's relationships between sugarcane attributes and chemical attributes of a Typic Tropustalf were studied in the growing season of 2010, in Suzanapolis, State of Sao Paulo, Brazil (20 degrees 27'33 '' S lat.; 51 degrees 08'05 '' W long.), in order to obtain the attributes that had the best sugarcane productivity relationship. To this end, a geostatistical grid containing 118 sample points was installed for soil and plant data collection in an area of 10.5 ha with the third crop cut. The productivity of sugarcane (PRO) represented the attribute of the plant, while the attributes of the soil were: K+, Ca+2, Mg+2 and organic matter at depths of 0-0.20 m and 0.20-0.40 m. Relationships were calculated between the PRO and the attributes of the soil. Semivariograms were adjusted for all attributes, obtaining the respective krigings and the cross-validations. It was also made the cokrigings between the PRO and the soil attributes. The levels of the soil organic matter, for their evident substantial correlations, Sperman's Rho and spatial, with the productivity of sugarcane, are indicators of two specific areas of soil management strongly associated with the productivity of sugarcane. In such zones this productivity varies between 75.8-94.7 t ha(-1) and 101.0-119.9 t ha(-1), when the levels of organic matter respectively are 12.7-14.5 g dm(-3) (0-0.20 m) and 11.8-12.8 g dm(-3) (0.20-0.40 m).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)