55 resultados para SolidWorks LabVIEW SoftMotion ALMATracker simulazione


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is initially based in give a solution to a problem consisting of lifting a load in a warehouse focusing specifically on the solution´s project and comparison of the results obtained following the sequence of the book and comparing these results with the finite elements simulation based on the 3D components modeling. Starting from that was realized the project of the worm gear reducer to solve the problem and makes the work easier. The project consisted basically of the study, project itself and simulation by software of a worm gear reducer and projects steps, starting with the initial problem conditions (to lifting a load up to an specific height at a given time) following all the reducer project sequence, starting by the preliminary draft and electric motor selection using iterative process, material selection, worm gear dimensioning, axles, keyways, bearings and coupling. After that was performed the three dimensional modeling of the components using SolidWorks software and simulating these components using Ansys software. The results show the importance of the CAD in terms of improving project development speed and reducing costs with prototypes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acceleration is a key parameter for engineering and is becoming increasingly important because of the need for companies to become more competitive in the market. Both applying new technologies to their products and optimizing their process lines with predictive maintenance and robotic automation. This study aims to analyze the quality of the signals obtained from a capacitive accelerometer. To do that a test rig was mounted, which consist of a shaker, fed by a signal generator, a linear potentiometer and a capacitive accelerometer; for the signal acquisition was used a acquisition board and the Labview software, in order to integrate twice the signal from the accelerometer and compare it with the sign of the potentiometer. This work also demonstrates the impact of acquired signal processing as well as techniques of pre and post processing of signal via software GNU/Octave

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the validity of critical force test from maximal lactate steady state (MLSS) during resistance test using straight bench press. Five healthy male volunteers aged (22.6 ± 2.88 years), weight (76.3 ± 11.49 kg) e height (182.6 ± 7.54cm), trained in resistance exercise, and performed four diferent test to determine: one maximal effort (1RM), critical force using the critical power model (force vs 1/time limit - 20, 25 and 30% 1RM). The CF was the linear coefficient and the anaerobic impulse capacity (CIA) was the angular. MLSS was determined using loads of 80, 90, 100 and 110% of critical force. Blood lactate samples were abtained at each 300sec between each stage of total 1200sec. Maximal 30s test (M30) was accomplished with load of 25% of body weight in SBP. The results showed that the 1 RM was 79.4 Kgf (± 16.98), CF 10.1N (± 2.25), CIA 1756.82 N.s (± 546.96) and the R² 0.984 (± 0,02). The MLSS occurs at 100% CF load. The lactate concentration at the MLSS was 2.2 mmol/L (± 0.77). Significant correlation was observed between MLSS and CF on SBP (r = 0.88 p = 0.05). In M30 the minimum, mean and peak power were (25.0 ± 4.9, 28.0 ± 4.9, and 30.0 ± 4.6 kgf.rps, respectively). The fatigue index was 18.0% (± 6,8). The M30 was significantly correlated with Ppeak and Pmean (r = 0.98 for both, p = 0.003). The CF means has been validated to predict the resistance training and the CIA show to be a representative anaerobic parameter in straight bench press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work refers to the design, conception and development of a quadcopter based on PID controllers, a widespread microcontroller on the market was being implemented, the Arduino. Also made use of LabVIEW programming tool from National Instruments company for the quadcopter control and telemetry. For the control, LabVIEW software acquired the joystick commands, making the necessary adjustments to the perfect interpretation by microcontroller on the quadcopter and adjusts the parameters of PID controllers. For telemetry, data relating to quadcopter behavior are received, interpreted and presented in an intuitive user interface. In the first part of this graduate work presents the theoretical background on the subject, with a brief history about the quadcopters, followed by the main projects in the academic and commercial matters. Also are presented the theories of communications used in the design and PID control. Then an overview of the dynamic and mathematical model is demonstrated. Having done this, the physical and computer components required to complete the project are showed and the results are achieved consequently. Finally, a conclusion is made taking into account the results obtained. In this work will be presented the PID control of quadcopter translational movements only to roll and pitch movements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to present the design and development of a speed reducer worm gear that will be implemented on an inclined treadmill that aims to raise the load below the top floor. The project start was made with research on issues related to mechanisms and machine elements, and these theories of fundamental importance in the development of device components, along with the help of SolidWorks software that was used to model the main parts of the project and Microsoft Office Excel 2007 was used to alight formulas to perform calculations of the project. All data for calculations were taken from the conditions of the problem to be solved in the best possible way the proposed problem (lifting load from the belt). Following the entire sequence of design gearbox assembly, beginning in pre-sizing and endless selection of electric motor, which consists of an iterative project, then scaling the worm gear and crown, shafts, splines, calculation and bearing selection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p < 0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p > 0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p <0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p < 0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue. (C) 2014 Elsevier Ltd. All rights reserved.