71 resultados para Singularities in Feynman propagators
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in k/m, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the MATHEMATICA software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear. For D=3 there are three regions in parameter space. We may have one or two massive poles or even no pole at all. The interquark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive two-dimensional QED (QED(2)). In D=3 the static potential must be calculated numerically. The screening nature of the massive QED(3) prevails at any distance, indicating that this is a universal feature of D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that at one-loop order, negative-dimensional, Mellin-Barnes (MB) and Feynman parametrization (FP) approaches to Feynman loop integral calculations are equivalent. Starting with a generating functional, for two and then for n-point scalar integrals, we show how to reobtain MB results, using negative-dimensional and FP techniques. The n-point result is valid for different masses, arbitrary exponents of propagators and dimension.
Resumo:
We present a strategy for the systematization of manipulations and calculations involving divergent (or not) Feynman integrals, typical of the one-loop perturbative solutions of QFT, where the use of an explicit regularization is avoided. Two types of systematization are adopted. The divergent parts are put in terms of a small number of standard objects, and a set of structure functions for the finite parts is also defined. Some important properties of the finite structures, specially useful in the verification of relations among Green's functions, are identified. We show that, in fundamental (renormalizable) theories, all the finite parts of two-, three- and four-point functions can be written in terms of only three basic functions while the divergent parts require (only) five objects. The final results obtained within the proposed strategy can be easily converted into those corresponding to any specific regularization technique providing an unified point of view for the treatment of divergent Feynman integrals. Examples of physical amplitudes evaluation and their corresponding symmetry relations verification are presented as well as generalizations of our results for the treatment of Green's functions having an arbitrary number of points are considered.
Resumo:
The well-known D-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative-dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature.
Resumo:
Here we present a possible way to relate the method of covariantizing the gauge-dependent pole and the negative dimensional integration method for computing Feynman integrals pertinent to the light-cone gauge fields. Both techniques are applicable to the algebraic light-cone gauge and dispense with prescriptions to treat the characteristic poles.
Resumo:
The goal of this article is to derive the Feynman rules involving single charginos, neutralinos, double charged gauge bosons, and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we calculate the production of double charged charginos with neutralinos and also the production of a pair of single charged charginos, both in an electron-electron linear collider.
Resumo:
Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). They express the renormalization group invariance of quantum mechanics. The present approach for the renormalization scheme relies on a subtracted T-matrix equation.
Resumo:
We present calculations for a nonplanar double box with four massless, massive external, and internal legs propagators. The results are expressed for arbitrary exponents of propagators and dimension in terms of Lauricella's hypergeometric functions of three variables and hypergeometric-like multiple series.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We consider numerical data for the lattice Landau gluon propagator obtained at very large lattice volumes in three-dimensional pure SU(2) Yang-Mills gauge theory (YM32). We find that the temporal correlator C(t) shows an oscillatory pattern and is negative for several values of t. This is an explicit violation of reflection positivity and can be related to gluon confinement. We also obtain a good fit for this quantity in the whole time interval using a sum of Stingl-like propagators.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.