207 resultados para Silicone elastomer
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
The failure of facial prostheses is caused by limitations in the properties of existing materials, especially flexibility and durability. Therefore, this study evaluated the marginal deterioration of a silicone used for fabrication of facial prostheses (Silastic MDX4-4210, Dow Corning Corporation, Midland, MI, USA) according to the influence of artificial aging, daily disinfection, and 2 types of pigmentation. Thirty specimens were fabricated and subdivided in 6 groups: without pigmentation, pigmented with make-up powder and iron oxide, and evaluated with and without the action of the disinfectant. Analysis of marginal deterioration was performed on a scanning electron microscope (magnification, ×5000) immediately 6 months and 1 year after fabrication of specimens, following the guidelines of ASTM International. After visual analysis of the photomicrographs, it was noticed that all groups presented marginal deterioration and alterations in surface texture with time. The use of disinfection did not contribute to the marginal deterioration of polymer (silicone), regardless of the pigmentation and artificial aging.
Resumo:
Objective: Histomorphometric study to evaluate the biological tissue compatibility of silicone implants suitable for plastic surgery. Methods: Thirty Wistar white rats received subcutaneous implants ande the revestiment of silicone gel Silimed, and randomized into six groups of five animals each, according to the type of implanted material and the time of sacrifice. Eight areas of 60.11 mm2 corresponding to the obtained surgical pieces were analyzed, counting mesenchymal cells, eosinophils, and foreign body giant cells, observing an acceptable biocompatibility in all implants, for subsequent statistical analysis by Tukey test. Results: Silicone gel showed inflammation slightly greater than for other groups, with tissue reactions varying from light to moderate, whose result was the formation of a fibrous capsule around the material, recognized by the organism as a foreign body. Conclusion: In general, it is possible to affirm that silicone gel had acceptable levels of biocompatibility, confirmed the rare presence of foreign body giant cells, and when of the rupture, formed a fibrous capsule around the material, separating the material of the organism.