79 resultados para Ship waves
Resumo:
The research evaluated the efficacy of high frequency waves in the treatment of onychomycosis in three patients during twelve months through the clinical examination of nails and also through mycological examination. The causative agent of the mycosis, in the three patients, was the dermatophyte Trichophyton rubrum and after application of high frequency, it was possible to notice a great improvement in the appearance of nails and also growth inhibition in culture despite the fact that the mycological examination remained positive. The preliminary study of the three cases demonstrated that the fungistatic activity of high frequency waves is a promising method to be used in combination with conventional drugs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of a temperature dependent viscosity in surface nonlinear waves propagating in a shallow fluid heated from below are investigated. It is shown that the (2+1)-dimensional Burgers equation may appear as the equation governing the upper free surface perturbations of a Bénard system, even when the viscosity is assumed to depend on temperature. The critical Rayleigh number for the appearance of waves governed by the Kadomtsev-Petviashvili equation, however, will be smaller than R=30, which is the critical number obtained for a constant viscosity. © 1992.
Resumo:
By using the long-wave approximation, a system of coupled evolutions equations for the bulk velocity and the surface perturbations of a Bénard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it is interpreted as a dissipative generalization of the usual Boussinesq system of equations. Then, by considering that the Marangoni number is near the critical value M = -12, we show that the modulation of the Boussinesq waves is described by a perturbed Nonlinear Schrödinger Equation, and we study the conditions under which a Benjamin-Feir instability could eventually set in. The results give sufficient conditions for stability, but are inconclusive about the existence or not of a Benjamin-Feir instability in the long-wave limit. © 1995.
Resumo:
By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms in each order of the perturbative expansion, we show that the Korteweg-de Vries hierarchy equations do play a role in the description of such waves. Finally, we show that this procedure of eliminating secularities is closely related to the renormalization technique introduced by Kodama and Taniuti. © 1995 American Institute of Physics.
Resumo:
We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature.
Resumo:
The BCS superconductivity to Bose condensation crossover problem is studied in two dimensions in S, P, and D waves, for a simple anisotropic pairing, with a finite-range separable potential at zero temperature. The gap parameter and the chemical potential as a function of Cooper-pair binding B c exhibit universal scaling. In the BCS limit the results for coherence length ξ and the critical temperature T c are appropriate for highT c cuprate superconductors and also exhibit universal scaling as a function of B c.
Resumo:
In this work we analyze the emission of gravitational waves from the Hénon-Heiles system. We show the qualitative differences among emission of the gravitational waves from regular and chaotic motions.
Resumo:
The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvectors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal growth rates, wave number, and phase shifts (between the density and potential fluctuations) are time dependent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously attributed to nonlinearity.
Resumo:
The solutions of a renormalized BCS equation are studied in three space dimensions in s, p and d waves for finite-range separable potentials in the weak to medium coupling region. In the weak-coupling limit, the present BCS model yields a small coherence length ξ and a large critical temperature, T c, appropriate for some high-T c materials. The BCS gap, T c, ξ and specific heat C s(T c) as a function of zero-temperature condensation energy are found to exhibit potential-independent universal scalings. The entropy, specific heat, spin susceptibility and penetration depth as a function of temperature exhibit universal scaling below T c in p and d waves.
Resumo:
The linear properties of an electromagnetic drift-wave model are examined. The linear system is non-normal in that its eigenvectors are not orthogonal with respect to the energy inner product. The non-normality of the linear evolution operator can lead to enhanced finite-time growth rates compared to modal growth rates. Previous work with an electrostatic drift-wave model found that nonmodal behavior is important in the hydrodynamic limit. Here, similar behavior is seen in the hydrodynamic regime even with the addition of magnetic fluctuations. However, unlike the results for the electrostatic drift-wave model, nonmodal behavior is also important in the adiabatic regime with moderate to strong magnetic fluctuations. © 2000 American Institute of Physics.
Resumo:
The criteria for the occurrence of roll wave phenomenon in the supercritical and turbulent Newtonian and non-Newtonian flows from the engineering point of view was analyzed. Imposing a constant discharge at the upstream of the canal and superposing a small perturbation, it was observed that roll waves can be developed more easily for small wave numbers and for high cohesions. Moreover, from the mathematical model used, it was demonstrated that the numerical viscosity was 10 times the physical viscosity.
Resumo:
Water waves generated by landslides were long menace in certain localities and the study of this phenomenon were carried out at an accelerated rate in the last decades. Nevertheless, the phase of wave creation was found to be very complex. As such, a numerical model based on Boussinesq equations was used to describe water waves generated by local disturbance. This numerical model takes in account the vertical acceleration of the particles and considers higher orders derivate terms previously neglected by Boussinesq, so that in the generation zone, this model can support high relative amplitude of waves.
Resumo:
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1 + 1) traveling-wave solutions for almost all the values of the Bond number θ (the special case θ=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. ©2005 The American Physical Society.