232 resultados para Second order cone programming
Resumo:
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed. Copyright (C) 2008 R. C. Domingos et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free-free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously.
Resumo:
This paper presents a simple but practical feedback control method to suppress the vibration of a flexible structure in the frequency range between 10 Hz and 1 kHz. A dynamic vibration absorber is designed for this, which has a natural frequency of 100 Hz and a normalized bandwidth (twice the damping ratio) of 9.9. The absorber is realized electrically by feeding back the structural acceleration at one position on the host structure to a collocated piezoceramic patch actuator via an analog controller consisting of a second-order lowpass filter. This absorber is equivalent to a single degree-of-freedom mechanical oscillator consisting of a serially connected mass-spring-damper system. A first-order lowpass filter is additionally used to improve stability at very high frequencies. Experiments were conducted on a free-free beam embedded with a piezoceramic patch actuator and an accelerometer at its center. It is demonstrated that the single absorber can simultaneously suppress multiple vibration modes within the control bandwidth. It is further shown that the control system is robust to slight changes in the plant. The method described can be applied to many other practical structures, after retuning the absorber parameters for the structure under control.
Resumo:
We consider the problem of blocking response surface designs when the block sizes are prespecified to control variation efficiently and the treatment set is chosen independently of the block structure. We show how the loss of information due to blocking is related to scores defined by Mead and present an interchange algorithm based on scores to improve a given blocked design. Examples illustrating the performance of the algorithm are given and some comparisons with other designs are made. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is often necessary to run response surface designs in blocks. In this paper the analysis of data from such experiments, using polynomial regression models, is discussed. The definition and estimation of pure error in blocked designs are considered. It is recommended that pure error is estimated by assuming additive block and treatment effects, as this is more consistent with designs without blocking. The recovery of inter-block information using REML analysis is discussed, although it is shown that it has very little impact if thc design is nearly orthogonally blocked. Finally prediction from blocked designs is considered and it is shown that prediction of many quantities of interest is much simpler than prediction of the response itself.