40 resultados para Satellite constellations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS has reached unprecedented proportions. The perturbations of the ionosphere caused by increased solar activity pose a major threat to these applications. This is particularly true in equatorial regions where high exposure to solar-induced disturbances is coupled with explosive growth of precise GNSS applications. Along with the various types of solar-induced ionospheric disturbances, strong scintillations are amongst the most challenging, causing phase measurement errors up to full losses of lock for several satellites. Brazil, which heavily relies on high-precision GNSS, is one of the most affected regions due notably to the proximity to the southern crest of the ionospheric equatorial anomaly and to the South Atlantic Magnetic Anomaly. In the framework of the CIGALA project, we developed the PolaRxS™, a GNSS receiver dedicated to the monitoring of ionospheric scintillation indices not only in the GPS L1 band but for all operational and upcoming constellations and frequency bands. A network of these receivers was deployed across the whole Brazilian territory in order to first investigate and secondly to mitigate the impact of scintillation on the different signals, ensuring high precision GNSS availability and integrity in the area. This paper reports on the validation of the PolaRxS™ receiver as an ionospheric scintillation monitor and the first results of the analysis of the data collected with the CIGALA network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of a modeling scheme for the spin stabilized satellites attitude, entirely developed in terms of quaternion parametrization. The analysis includes numerical propagation of the rotational motion equation, considering the influence of the following torques: aerodynamic, gravity gradient, residual magnetic, eddy currents and the one due to the Lorentz force. Applications are developed considering the Brazilian Spin Stabilized Satellites SCD1 and SCD2, which are quite appropriated for verification and comparison of the theory with the real data generated and processed by the INPE's Satellite Control Center (SCC). The results show that for SCD1 and SCD2 the influence of the eddy current torque is bigger than the others ones, not only due to the orbit altitude, but also to other specific satellites characteristics. The influence of the torque due to Lorentz force is smaller than the others ones because of the dimension and the electrical charges of the SCD1 and SCD2. In all performed tests the errors remained within the dispersion range specified for the attitude determination system of INPE's SCC. The results show the feasibility of using the quaternion attitude parametrization for modeling the satellite dynamics of spin stabilized satellites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical approach for spin stabilized attitude propagation is presented, considering the coupled effect of the aerodynamic torque and the gravity gradient torque. A spherical coordination system fixed in the satellite is used to locate the satellite spin axis in relation to the terrestrial equatorial system. The spin axis direction is specified by its right ascension and the declination angles and the equation of motion are described by these two angles and the magnitude of the spin velocity. An analytical averaging method is applied to obtain the mean torques over an orbital period. To compute the average components of both aerodynamic torque and the gravity gradient torque in the satellite body frame reference system, an average time in the fast varying orbit element, the mean anomaly, is utilized. Afterwards, the inclusion of such torques on the rotational motion differential equations of spin stabilized satellites yields conditions to derive an analytical solution. The pointing deviation evolution, that is, the deviation between the actual spin axis and the computed spin axis, is also availed. In order to validate the analytical approach, the theory developed has been applied for spin stabilized Brazilian satellite SCD1, which are quite appropriated for verification and comparison of the data generated and processed by the Satellite Control Center of the Brazil National Research Institute (INPE). Numerical simulations performed with data of Brazilian Satellite SCD1 show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of the Brazilian Research Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm for real-time and onboard orbit determination applying the Extended Kalman Filter (EKF) method is developed. Aiming at a very simple and still fairly accurate orbit determination, an analysis is performed to ascertain an adequacy of modeling complexity versus accuracy. The minimum set of to-be-estimated states to reach the level of accuracy of tens of meters is found to have at least the position, velocity, and user clock offset components. The dynamical model is assessed through several tests, covering force model, numerical integration scheme and step size, and simplified variational equations. The measurement model includes only relevant effects to the order of meters. The EKF method is chosen to be the simplest real-time estimation algorithm with adequate tuning of its parameters. In the developed procedure, the obtained position and velocity errors along a day vary from 15 to 20 m and from 0.014 to 0.018 m/s, respectively, with standard deviation from 6 to 10 m and from 0.006 to 0.008 m/s, respectively, with the SA either on or off. The results, as well as analysis of the final adopted models used, are presented in this work. © 2013 Ana Paula Marins Chiaradia et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection - SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)