66 resultados para SU(3) symmetry
Resumo:
We investigate the (D) over barN interaction at low energies using a meson exchange model supplemented with a short-distance contribution from one-gluon exchange. The model is developed in close analogy to the meson-exchange KN interaction of the Julich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box diagrams involving (D) over bar *N , (D) over bar Delta, and (D) over bar*Delta intermediate states. The short-range part is assumed to receive additional contributions from genuine quark-gluon processes. The predicted cross-sections for (D) over barN for excess energies up to 150MeV are of the same order of magnitude as those for KN but with average values of around 20mb, roughly a factor two larger than for the latter system. It is found that the omega-exchange plays a very important role. Its interference pattern with the rho-exchange, which is basically fixed by the assumed SU(4) symmetry, clearly determines the qualitative features of the (D) over barN interaction - very similiar to what happens also for the KN system.
Resumo:
We show that in 3-3-1 models there exist a natural relation among the SU(3)(L) coupling constant g, the electroweak mixing angle theta(W), the mass of the W, and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Several left-right asymmetries in Moller (electron-electron), muon-muon and electron-muon scattering are considered in the context of the electroweak standard model and in a model with SU(3)(C) x SU(3)(L) x U(1)(Y) gauge symmetry at tree level in collider experiments. We show that these asymmetries are very sensitive to a doubly charged vector bilepton in the case of ee and mu mu colliders and to an extra Z' neutral vector boson contribution in e(-)mu (-) collider.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Mass relations for hadrons containing a single heavy quark (charm or beauty) are studied from the viewpoint of a quark model with broken SU(8) symmetry, developed by Hendry and Lichtenberg some time ago, in comparison to that of the heavy quark effective theory. The interplay of the two approaches is explored and spectroscopic consequences derived.
Resumo:
The pseudoscalar mesons η(547), η′(958) and η″(1410) are studied in the gluonium-quarkonium mixing framework. The SU(3)-flavor symmetry breaking and annihilation effects are considered. Estimates of the glueball mass and of the ms/mu ratio are provided. The system η(1295) and η(1490) is also considered in a mixing scheme.
Resumo:
We consider the contributions to the neutrinoless double beta decays in a SU(3)L⊗U(1)N electroweak model. We show that for a range of parameters in the model there are diagrams involving vector-vector-scalar and trilinear scalar couplings which can be potentially as contributing as the light massive Majorana neutrino exchange one. We use these contributions to obtain constraints upon some mass scales of the model, such as the masses of the new charged vector and scalar bosons. We also consider briefly the decay in which, in addition to the two electrons, a Majoron-like boson is emitted. ©2001 The American Physical Society.
Resumo:
A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KN potential of the Jülich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (ρ, ω) exchange and higher-order box diagrams involving D *N, DΔ, and D *Δ intermediate states. The coupling of DN to the π Λ c and π Σ c channels is taken into account. The interaction model generates the Λ c(2595)-resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of two interaction models that are based on the leading-order Weinberg-Tomozawa term. Some features of the Λ c(2595)-resonance are discussed and the role of the near-by π Σ c threshold is emphasized. Selected predictions of the orginal KN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Λ(1405)-resonance. © 2011 SIF, Springer-Verlag Berlin Heidelberg.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the effects of dissipation in the deconfinement transition for pure SU(2) and SU(3) gauge theories. Using an effective theory for the order parameter, we study its Langevin evolution numerically. Noise effects are included for the case of SU(2). We find that both dissipation and noise have dramatic effects on the spinodal decomposition of the order parameter and delay considerably its thermalization. For SU(3) the effects of dissipation are even larger than for SU(2).
Resumo:
We examine a recently proposed connection constraining U(1)(em) electromagnetic gauge invariance and the nature of neutrino mass terms in the framework of G(0) = SU(3)(C) x G(W) x U(1)(N) gauge extensions of the standard model where G(W) denotes the weak isospin special unitary extended groups. We show that in a large class of G(0) models there is a unique fermion representation content and scalar fields which select the neutrino mass terms. Noteworthy. even though there are mathematically equivalent representation contents then can be different aspects concerning the physical consequences which are not a mere truism.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.