51 resultados para SHUTTLE RADAR TOPOGRAPHY
Resumo:
This paper presents the results from lineal trend surface analysis technique application. The purpose was to detect positive and negative anomalies in the rain measure distribution obtained by the meteorological radar Doppler, band S, located in Bauru, during the period of 21 of October/2004 to 29 of April/2005 in the areas of Assis and Piracicaba. Using three Z-R radar relations for rain quantification was chosen the specific equation Z = 32R1,65, as the best one. The results showed that the applied methodology was able to indicate the space distribution of the rain accumulated, identifying and locating the regions where there was rainy excess and rainy lack during each analyzed period. Such results indicate areas with larger pluvial impact and consequently more favorable for environmental damages.
Resumo:
In this paper we would like to shed light the problem of efficiency and effectiveness of image classification in large datasets. As the amount of data to be processed and further classified has increased in the last years, there is a need for faster and more precise pattern recognition algorithms in order to perform online and offline training and classification procedures. We deal here with the problem of moist area classification in radar image in a fast manner. Experimental results using Optimum-Path Forest and its training set pruning algorithm also provided and discussed. © 2011 IEEE.
Resumo:
Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of São Paulo, in the city of Cubatão, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar. © 2011 SPIE.
Resumo:
This study aimed to evaluate Y-TZP surface after different airborne particle abrasion protocols. Seventy-six Y-TZP ceramic blocks (5×4×4) mm3 were sintered and polished. Specimens were randomly divided into 19 groups (n=4) according to control group and 3 factors: a) protocol duration (2 and 4 s); b) particle size (30 μm, alumina coated silica particle; 45 μm, alumina particle; and 145 μm, alumina particle) and; c) pressure (1.5, 2.5 and 4.5 bar). Airborne particle abrasion was performed following a strict protocol. For qualitative and quantitative results, topography surfaces were analyzed in a digital optical profilometer (Interference Microscopic), using different roughness parameters (Ra, Rq, Rz, X-crossing, Mr1, Mr2 and Sdr) and 3D images. Surface roughness also was analyzed following the primer and silane applications on Y-TZP surfaces. One-way ANOVA revealed that treatments (application period, particle size and pressure of particle blasting) provided significant difference for all roughness parameters. The Tukey test determined that the significant differences between groups were different among roughness parameters. In qualitative analysis, the bonding agent application reduced roughness, filing the valleys in the surface. The protocols performed in this study verified that application period, particle size and pressure influenced the topographic pattern and amplitude of roughness.
Resumo:
The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10-1,093 m a.s.l.) in the Atlantic Rainforest-a top hotspot for biodiversity conservation-and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study evaluated the influence of air-particle abrasion protocols on the surface roughness (SR) of zirconia and the shear bond strength (SBS) of dual-polymerized resin cement to this ceramic. Materials and methods. Sintered zirconia blocks (n = 115) (Lava, 3M ESPE) were embedded in acrylic resin and polished. The specimens were divided according to the 'particle type' (Al: 110 mu m Al2O3; Si: 110 mu m SiO2) and 'pressure' factors (2.5 or 3.5 bar) (n = 3 per group): (a) Control (no air-abrasion); (b) Al2.5; (c) Si2.5; (d) Al3.5; (e) Si3.5. SR (Ra) was measured 3-times from each specimen after 20 s of air-abrasion (distance: 10 mm) using a digital optical profilometer. Surface topography was evaluated under SEM analyses. For the SBS test, 'particle type', 'pressure' and 'thermocycling' (TC) factors were considered (n = 10; n = 10 per group): Control (no air-abrasion); Al2.5; Si2.5; Al3.5; Si3.5; Control(TC); Al2.5(TC); Si2.5(TC); Al3.5(TC); Si3.5(TC). After silane application, resin cement (Panavia F2.0) was bonded and polymerized. Specimens were thermocycled (6.000 cycles, 5-55 degrees C) and subjected to SBS (1 mm/min). Data were analyzed using ANOVA, Tukey's and Dunnett tests (5%). Results. 'Particle' (p = 0.0001) and 'pressure' (p = 0.0001) factors significantly affected the SR. All protocols significantly increased the SR (Al2.5: 0.45 +/- 0.02; Si2.5: 0.39 +/- 0.01; Al3.5: 0.80 +/- 0.01; Si3.5: 0.64 +/- 0.01 mu m) compared to the control group (0.16 +/- 0.01 mu m). For SBS, only 'particle' factor significantly affected the results (p = 0.015). The SiO2 groups presented significantly higher SBS results than Al2O3 (Al2.5: 4.78 +/- 1.86; Si2.5: 7.17 +/- 2.62; Al3.5: 4.97 +/- 3.74; Si3.5: 9.14 +/- 4.09 MPa) and the control group (3.67 +/- 3.0 MPa). All TC specimens presented spontaneous debondings. SEM analysis showed that Al2O3 created damage in zirconia in the form of grooves, different from those observed with SiO2 groups. Conclusions. Air-abrasion with 110 mu m Al2O3 resulted in higher roughness, but air-abrasion protocols with SiO2 promoted better adhesion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we analyze a measurement system that will be implanted in a wheels production line, in order to use those wheels for buses and trucks. The measurement device has to be approved according to the MSA study, due to the fact that the mentioned industry is an automobilistic supplier, so that it has to be conform with the ISO/TS 16949 standards. We showed the MSA studies, as well as some concepts for the work understanding. The airlock wheels systematic production is also broached, that is to say, wheels that use airlock tyres, with a better attention given to the rim production, where the device must be implanted. We analyze and assess the data’s acceptance according to the guidelines showed in this study, along with this, improvement proposals are elaborated and their analysis is made, in order to check the obtained results. Finally, we survey the analyzed measurement system, and new studies are suggested, with the intention of improving it