98 resultados para Rutherford backscattering in channeling geometry
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
During a long time, origami was associated with decoration and craft production of ornaments and figures. However, in the end of 20th century, it began to be studied by mathematicians who were looking for interrelationships between this art and science. Through disciplines like geometry, trigonometry, calculation and linear algebra, they generated a set of axioms and theorems that became possible specific conversion of origami in computational geometry and the development of several softwares. Thus, origami began to be applied in engineering and design studies of innovative product and the term “origamics” was created to demonstrate its interdisciplinary nature. In this article will be presented some works exploring the constructive principles of origami to contribute with the diffusion of origamics. In this way more professionals will be able to understand the scientific and technological potential of this art.
Resumo:
This research presents an investigation about the relevance of visualization in teaching geometry. Our interest turns to analyzing the use of technology in teaching geometry, seeking to highlight their contribution to learning. The students of today - second decade of the 21st century - require that, each time more, the school move towards the integration of technologies for teaching since tablets, smartphone, netbook, notebook are items present on daily life of most students. Thereby, we investigate, taking the phenomenological orientation, the potential of educational software, especially the Geogebra 3D, directed at teaching math and favoring the work with the geometry viewing. At work we bring some theoretical considerations about the importance of viewing for the geometric learning and the use of technologies. We build an intervention proposal for the classroom of the 7th year of elementary school with tasks aimed at visual exploration and allow the teacher to work the concept of volume of geometric solids
Resumo:
Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.
Resumo:
We present algorithms for computing the differential geometry properties of intersection Curves of three implicit surfaces in R(4), using the implicit function theorem and generalizing the method of X. Ye and T. Maekawa for 4-dimension. We derive t, n, b(1), b(2) vectors and curvatures (k(1), k(2), k(3)) for transversal intersections of the intersection problem. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.
Resumo:
In the context of the hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes. © SISSA/ISAS 2003.
Resumo:
The external detector method (EDM) is a widely used technique in fission track thermochronology (FTT) in which two different minerals are concomitantly employed: spontaneous tracks are observed in apatite and induced ones in the muscovite external detector. They show intrinsic differences in detection and etching properties that should be taken into account. In this work, new geometry factor values, g, in apatite, were obtained by directly measuring the ρed/ρis ratios and independently determined [GQR]ed/is values through the measurement of projected lengths. Five mounts, two of which were large area prismatic sections and three samples composed of random-orientation pieces have been used to determine the g-values. A side effect of applying EDM is that the value of the initial confined induced fission track, L0, is not measured in routine analyses. The L 0-value is an important parameter to quantify with good confidence the degree of annealing of the spontaneous fission tracks in unknown-age samples, and is essential for accurate thermal history modeling. The impact of using arbitrary L0-values on the inference of sample thermal history is investigated and discussed. The measurement of the L0-value for each sample to be dated using an extra irradiated apatite mount is proposed. This extra mount can be also used for determining the g value as an extension of the ρed/ρis ratio method. Eight apatite samples from crystalline basement, with grains at random orientation, were used to determine the g-values. The results found are statistically in agreement with the values found for apatite samples (from Durango, Mexico) measured in prismatic section and also measured at random orientation. There was no observable variation in efficiency regarding crystal orientation, showing that it is relatively safe using non-prismatic grains, especially in samples with paucity of grains, as it is the case of most basin samples. Implications for the ζ-calibration and for the calibration of the direct (spectrometer-based) fission-track dating are also discussed.
Resumo:
Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.
Resumo:
We study the production and signatures of doubly charged Higgs bosons (DCHBs) in the process gamma gamma <-> H(--)H(++) at the e(-)e(+) International Linear Collider and CERN Linear Collider, where the intermediate photons are given by the Weizsacker-Willians and laser backscattering distributions.
Resumo:
In the present paper we develop an algorithm to solve the time dependent Ginzburg-Landau equations, by using the link variables technique, for circular geometries. In addition, we evaluate the Helmholtz and Gibbs free energy, the magnetization, and the number of vortices. This algorithm is applied to a circular sector. We evaluate the superconduting-normal magnetic field transition, the magnetization, and the superconducting density. Our results point out that, as we reduce the superconducting area, the nucleation field increases. Nevertheless, as the angular width of the circular sector goes to small values the asymptotic behavior is independent of the sample area. We also show that the value of the first nucleation field is approximately the same independently of the form of the circular sector. Furthermore, we study the nucleation of giant and multivortex states for the different shapes of the present geometry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)