36 resultados para Resistance reduction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study was to evaluate the fracture resistance of teeth submitted to several internal bleaching protocols using 35% hydrogen peroxide (35HP), 37% carbamide peroxide (37CP), 15% hydrogen peroxide with titanium dioxide nanoparticles (15HPTiO2) photoactivated by LED-laser or sodium perborate (SP). Materials and methods: After endodontic treatment, fifty bovine extracted teeth were divided into five groups (n = 10): G1-unbleached; G2-35HP; G3-37CP; G4-15HPTiO2 photoactivated by LED-laser and G5-SP. In the G2 and G4, the bleaching protocol was applied in 4 sessions, with 7 days intervals between each session. In the G3 and G5, the materials were kept in the pulp teeth for 21 days, but replaced every 7 days. After 21 days, the teeth were subjected to compressive load at a cross head speed of 0.5 mm/min, applied at 135° to the long axis of the root using an eletromechanical testing machine, until teeth fracture. The data were submitted to ANOVA and Tukey tests (α = 5%). Results: The 35HP, 37CP, 15HPTiO2 and SP showed similar fracture resistance teeth reduction (p > 0.05). All bleaching treatments reduced the fracture resistance compared to unbleached teeth (p < 0.05). Conclusion: All bleaching protocols reduced the fracture resistance of endodontically-treated teeth, but there were no differences between each other. Clinical significance: There are several internal bleaching protocols using hydrogen peroxide in different concentrations and activation methods. This study evaluated its effects on fracture resistance in endodontically-treated teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.