132 resultados para Renormalization (Physics)
Resumo:
By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general-case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than telepaxallel gravity or general relativity.
Resumo:
Two new families of T-dual integrable models of dyonic type are constructed. They represent specific A(n)((1)) singular non-abelian affine Toda models having U(1) global symmetry. Their I-soliton spectrum contains both neutral and U(I)-charged topological solitons sharing the main properties of 4-dimensional Yang-Mills-Higgs monopoles and dyons. The semiclassical quantization of these solutions as well as the exact counterterms and the coupling constant renormalization are studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing (υ) over bar (e) from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We discuss the pure gauge Schwinger-Dyson equation for the gluon propagator in the Landau gauge within an approximation proposed by Mandelstam many years ago. We show that a dynamical gluon mass arises as a solution. This solution is obtained numerically in the full range of momenta that we have considered without the introduction of any ansatz or asymptotic expression in the infrared region. The vertex function that we use follows a prescription formulated by Cornwall to determine the existence of a dynamical gluon mass in the light cone gauge. The renormalization procedure differs from the one proposed by Mandelstam and allows for the possibility of a dynamical gluon mass. Some of the properties of this solution, such as its dependence on A(QCD) and its perturbative scaling behavior are also discussed.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
We apply the subtractive renormalization method to the nucleon-nucleon interaction at Next-to-Next-to-Leading order (NNLO). Here we show the results for some uncoupled peripheral waves.
Resumo:
We investigate a class of conformal nonabelian-Toda models representing noncompact SL(2, R)/U(1) parafermions (PF) interacting with specific abelian Toda theories and having a global U(1) symmetry. A systematic derivation of the conserved currents, their algebras, and the exact solution of these models are presented. An important property of this class of models is the affine SL(2, R)(q) algebra spanned by charges of the chiral and antichiral nonlocal currents and the U(1) charge. The classical (Poisson brackets) algebras of symmetries VG(n), of these models appear to be of mixed PF-WG(n) type. They contain together with the local quadratic terms specific for the W-n-algebras the nonlocal terms similar to the ones of the classical PF-algebra. The renormalization of the spins of the nonlocal currents is the main new feature of the quantum VA(n)-algebras. The quantum VA(2)-algebra and its degenerate representations are studied in detail. (C) 1999 Academic Press.
Resumo:
At hadron colliders, the search for R-parity violating supersymmetry can probe scalar masses beyond what is covered by pair production processes. We evaluate the next-to-leading order SUSY-QCD corrections to the associated stop or sbottom production with a lepton through R-parity violating interactions. We show that higher order corrections render the theoretical predictions more stable with respect to variations of the renormalization and factorization scales and that the total cross section is enhanced by a factor up to 70% at the Tevatron and 50% at the LHC. We investigate in detail how the heavy supersymmetric states decouple from the next-to-leading order process, which gives rise to a theory with an additional scalar leptoquark. In this scenario the inclusion of higher order QCD corrections increases the Tevatron reach on leptoquark masses by up to 40 GeV and the LHC reach by up to 200 GeV. (C) 2003 Published by Elsevier B.V. B.V.
Resumo:
We investigate the impact of new physics beyond the Standard Model to the s --> d gamma process, which is responsible for the short-distance contribution to the radiative decay Omega-( )--> Xi(-) gamma. We study three representative extensions of the Standard Model, namely a one-family technicolor model, a two Higgs doublet model and a model containing scalar leptoquarks. When constraints arising from the observed b --> s gamma transition and the upper limit on D-0-(D) over bar(0) mixing are taken into account, we find no significant contributions of new physics to the s --> d gamma process.
Resumo:
Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.
Resumo:
We study the behavior of the renormalized sextic coupling at the intermediate and strong coupling regime for the phi(4) theory defined in d = 2 dimensions. We found a good agreement with the results obtained by the field-theoretical renormalization-group in the Ising limit. In this work we use the lattice regularization method.
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
We discuss several key problems of conventional QCD glueball sum rules in the spin-0 channels and show how they are overcome by nonperturbative Wilson coefficients. The nonperturbative contributions originate from direct instantons and, in the pseudoscalar channel, additionally from topological charge screening. The treatment of the direct-instanton sector is based on realistic instanton size distributions and renormalization at the operator scale. The resulting predictions for spin-0 glueball properties as well as their implications for experimental glueball searches are discussed.
Resumo:
Topological charge screening in the QCD vacuum is found to provide crucial nonperturbative contributions to the short-distance expansion of the pseudoscalar (0-+) glueball correlator. The screening contributions enter the Wilson coefficients and are an indispensable complement to the direct instanton contributions. They restore consistency with the anomalous axial Ward identity and remedy several flaws in the 0-+ glueball sum rules caused by direct instantons in the absence of screening (lack of resonance signals, violation of the positivity bound and of the underlying low-energy theorem). The impact of the finite width of the instanton size distribution and the (gauge-invariant) renormalization of the instanton contributions are also discussed. New predictions for the 0-+ glueball mass and decay constant are presented.
Resumo:
We review the work done by our group on cosmic topology. It ranges from early atempts to solve a famous controversy about quasars thought the multiplicity of images, to quantum cosmology in this context and an application to QED renormalization.