178 resultados para Reconfiguration of electrical distribution systems
Resumo:
The aim of this study was to assess the behavior and stress distribution of 3 retention systems associated with implant for facial prosthesis by using the photoelasticity method. A photoelastic model was made from the replica of the orbital region on the left side of a dry skull with two 4-mm implants fixed in the superior orbital region. Three facial prosthetic retention systems were made for this study: O'ring, bar-clip, and magnets. The set (model/retention systems/prosthesis) was placed in a polariscope, and then traction began to be applied to the retention systems. The limit values for removal of the retention system were obtained by tests performed in an EMIC Universal test machine. The results were obtained by observation during the experiments and by photographic record of the stress behavior in the photoelastic model, resulting from the traction of the retention systems. In the magnet system, a lowest formation of fringes was verified both around and between the implants; in the O'ring system, the formation of photoelastic fringes was noted between the implants in the apical region; and in the bar-clip system, there was a greater concentration of colored fringes in the regions between the implants and cervical area. Based on the results obtained, it was concluded that the retention systems produced different stress distribution characteristics that, in general, were concentrated in the area around the implants, and the highest concentration of fringes, in increasing order, occurred ill the retention systems of the magnets, O'ring, and bar-clip.
Resumo:
This work presents a new three-phase transformer modeling suitable for simulations in Pspice environment, which until now represents the electrical characteristics of a real transformer. It is proposed the model comparison to a three-phase transformer modeling present in EMTP - ATP program, which includes the electrical and magnetic characteristics. In addition, a set including non-linear loads and a real three-phase transformer was prepared in order to compare and validate the results of this new proposed model. The three-phase Pspice transformer modeling, different from the conventional one using inductance coupling, is remarkable for its simplicity and ease in simulation process, since it uses available voltage and current sources present in Pspice program, enabling simulations of three-phase network system including the most common configuration, three wires in the primary side and four wires in the secondary side (three-phases and neutral). Finally, the proposed modeling becomes a powerful tool for three-phase network simulations due to its simplicity and accuracy, able to simulate and analyze harmonic flow in three-phase systems under balanced and unbalanced conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.
Resumo:
This paper presents a new methodology to evaluate in a predictive way the reliability of distribution systems, considering the impact of automatic recloser switches. The developed algorithm is based on state enumeration techniques with Markovian models and on the minimal cut set theory. Some computational aspects related with the implementation of the proposed algorithm in typical distribution networks are also discussed. The description of the proposed approach is carried out using a sample test system. The results obtained with a typical configuration of a Brazilian system (EDP Bandeirante Energia S.A.) are presented and discussed.
Resumo:
In some applications like fault analysis, fault location, power quality studies, safety analysis, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of particular interest. In order to investigate effects of neutrals and system grounding on the operation of the distribution feeders with faults, in this research a hybrid short circuit algorithm is generalized. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. Results obtained from several case studies using IEEE 34-node test network are presented and discussed.
Resumo:
Here a multiobjective performance index for distribution systems with distributed generation based on a steady-state analysis of the network is proposed. This index quantifies the distributed generation impact on total losses, voltage profile and short circuit currents, and will be used as objective function in an evolutionary algorithm aimed at searching the best points for connecting distributed generators. Moreover, a loss allocation technique, based on the Zbus method, is applied on the original configuration of the network to obtain a good quality initial population. An IEEE medium voltage distribution network is analysed and results are presented and discussed.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. ©2008 IEEE.
Resumo:
This article aims to present proposals for improvement of key standards and resolutions concerned about the methodology for calculating the indicator of total harmonic voltage distortion, and should contribute to the process of examining the compatibility of potentially disturbing loads in electric power quality in distribution systems. These proposals were drawn from the analysis of results from measurement campaigns conducted in a case study including analysis of the connection of a new induction furnace in a foundry served by a distributor of São Paulo state. A general historical situating the quality of electric energy in the electricity sector is presented, and methodological guidelines and procedures used in experimental trials are shown. The analysis and discussion of results are prepared to answer the main questions that arise during the implementation of standards, resolutions and procedures. © 2011 IEEE.
Resumo:
Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.
Resumo:
An important alteration of the equivalent loads profile has been observed in the electrical energy distribution systems, for the last years. Such fact is due to the significant increment of the electronic processors of electric energy that, in general, behave as nonlinear loads, generating harmonic distortions in the currents and voltages along the electric network. The effects of these nonlinear loads, even if they are concentrated in specific sections of the network, are present along the branch circuits, affecting the behavior of the entire electric network. For the evaluation of this phenomenon it is necessary the analysis of the harmonic currents flow and the understanding of the causes and effects of the consequent voltage harmonic distortions. The usual tools for calculation the harmonic flow consider one-line equivalent networks, balanced and symmetrical systems. Therefore, they are not tools appropriate for analysis of the operation and the influence/interaction of mitigation elements. In this context, this work proposes the development of a computational tool for the analysis of the three-phase harmonic propagation using Norton modified models and considering the real nature of unbalanced electric systems operation. © 2011 IEEE.
Resumo:
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance. © 2012 Published by Elsevier Ltd.