39 resultados para REGULATES HEPCIDIN EXPRESSION
Resumo:
Aims Endometrial cancer is one of the most common cancers in women worldwide, but there is a lack of diagnostic markers for early detection of these tumours. The raf kinase inhibitory protein (RKIP) negatively regulates the Raf/MEK/ERK pathway, and the downregulation of RKIP is associated with tumour progression and metastasis in several human neoplasms. The aim of this study was to assess the expression levels of RKIP in endometrial cancer and determine whether this expression correlates with clinical outcome in these patients.Methods Tissue microarrays constructed using tissue samples from 209 endometrial adenocarcinomas, 49 endometrial polyps and 48 endometrial hyperplasias were analysed for RKIP expression by immunohistochemistry.Results The authors found that RKIP expression decreases significantly during malignant progression of endometrial cancer; it is highly expressed in non-neoplastic tissues (polyps 79.6%; hyperplasias 87.5%) and expressed at very low levels in endometrioid adenocarcinomas (29.7%). No correlations were observed between RKIP expression, clinicopathological data and survival.Conclusion This study demonstrated for the first time that RKIP expression is lost during the carcinogenic evolution of endometrial tumours and that the loss of RKIP expression is associated with a malignant phenotype. Functional studies are needed to address the biological role of RKIP downregulation in endometrial cancer.
Resumo:
Tamoxifen was proven to reduce the incidence of breast cancer by 49% in women at increased risk of the disease in the Breast Cancer Prevention Trial. In order to identify potential candidates to explain the preventive effect induced by tamoxifen on breast cancer, normal breast tissue obtained from 42 fibroadenoma patients, randomly assigned to receive placebo or tamoxifen, was analyzed by the reverse Northern blot and RT-PCR techniques. The cDNA fragments used on Northern blot membranes were generated by the Human Cancer Genome Project funded by the Ludwig Institute for Cancer Research and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil). Total RNA was obtained from normal breast tissue from patients with clinical, cytological and ultrasound diagnosis of fibroadenoma. After a 50-day treatment with tamoxifen (10 or 20 mg/day) or placebo, normal breast tissue adjacent to the tumor was collected during lumpectomy with local anesthesia. One differentially expressed gene, Calcium/calmodulin-dependent protein kinase II (CaMKII), was found to be down-regulated during TAM treatment. CaMKII is an ubiquitous serine/threonine protein kinase that has been implicated in the diverse effects of hormones utilizing Ca2+ as a second messenger as well as in c-fos activation. These results indicate that the down-regulation of CaMKII induced by TAM might represent alternative or additional mechanisms of the action of this drug on cell cycle control and response to hormones in normal human breast tissue.
Resumo:
Objectives were to evaluate the role of canonical WNT signaling in development of the preimplantation embryo. Signaling was activated with 2-Amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) and inhibited with Dickkopf-related protein 1 (DKK1). Treatment of bovine embryos with AMBMP at day 5 after insemination decreased development to the blastocyst stage at day 7 and reduced numbers of trophectoderm and inner cell mass cells. At high concentrations, AMBMP caused disorganization of the inner cell mass. DKK1 blocked actions of AMBMP but did not affect development in the absence of AMBMP. Examination of gene expression in day 6 morulae by microarray revealed expression of 16 WNT genes and other genes involved in WNT signaling; differences in relative expression were confirmed by PCR for 7 genes. In conclusion, the preimplantation embryo possesses a functional WNT signaling system and activation of the canonical pathway can inhibit embryonic development.
Resumo:
Background: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion. © 2013 Guido et al.; licensee BioMed Central Ltd.
Resumo:
Bovine herpesvirus 5 (BoHV-5) is an α-herpesvirus that causes neurological disease in young cattle and is also occasionally involved in reproductive disorders. Although there have been many studies of the apoptotic pathways induced by viruses belonging to the family Herpesviridae, there is little information about the intrinsic programmed cell death pathway in host-BoHV-5 interactions. We found that BoHV-5 is able to replicate in both mesenchymal and epithelial cell lines, provoking cytopathology that is characterized by cellular swelling and cell fusion. Viral antigens were detected in infected cells by immunofluorescence assay at 48 to 96 h post-infection (p.i.). At 48 to 72 h p.i., anti-apoptotic BCL-2 antigens were found at higher levels than Bax antigens; the latter is considered a pro-apoptotic protein. Infected cells had increased BCL-2 phenotype cells from 48 to 96 h p.i., based on flow cytometric analysis. At 48 to 96 h p.i., Bax mRNA was not expressed in any of the infected cell monolayers. In contrast, BCL-2 mRNA was found at high levels at all p.i. in both types of cells. BoHV-5 replication apparently modulates BCL-2 expression and gene transcription, enhancing production of virus progeny. © FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The allelopathic potential of leaf extracts from the medicinal plant Myrcia guianensis (Aubl.) DC. was studied in Petri dish bioassays on sorghum and determined the seed germination, germination rate index (GRI), root growth, secondary root number, the genes involved in root development (SHR, PHB, PHV and REV) and microRNA 166 that regulates these genes. The hydroalcoholic extract was more inhibitory than methanol extract (moderate inhibition) and aqueous extract at 25 and 100% concentration were least inhibitory. Application of higher dose of hydroalcoholic M. guianenesis leaf extracts on sorghum seeds, inhibited the root development and changed the expression of SHR and PHB genes and microRNA 166. This suggested that the expression of these genes could be indicator of allelopathic potential for inhibition of root development in sorghum.
Resumo:
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.