37 resultados para Pyroelectric coefficients
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
The digestible energy and apparent nutrient digestibility coefficients of common diet ingredients were determined for pacu Piaractus brachypomus (370.21 ± 17.56 g). Fish were fed with pelleted practical diets to apparent satiation and the feces were collected by siphoning. The digestibility value for each ingredient was determined by comparison of the digestibility of a test diet with a reference diet (24.5% crude protein and 1% chromic oxide). The digestible energy values of soybean meal (SBM), fish meal (FM), corn (CN), and wheat bran (WB) were 2382, 3826, 3353, and 1784 kcal/kg, respectively. The apparent dry matter digestibility coefficients were 83.72, 90.14, 89.13, and 82.05% for SBM, FM, CN, and WB, respectively. The apparent crude protein digestibility coefficients were 75.88, 90.49, 85.06, and 61.62% for SBM, FM, CN, and WB, respectively. The apparent lipid digestibility coefficients were 63.03, 77.00, 83.01, and 82.45% for SBM, FM, CN, and WB, respectively. The digestibility of protein, lipid, and energy from SBM were somewhat low compared to values for other warmwater omnivorous fishes, but similar to values reported for pacu-caranha P. mesopotamicus. Otherwise, the nutrient and energy availability of the ingredients to P. brachypomus was similar to that of other fish. This information will be useful in formulating nutritious, economical diets for pacus. © by the World Aquaculture Society 2004.
Resumo:
Nonlinear (NL) optical properties of antimony oxide based glasses (AG) were characterized for excitation wavelengths from 800 to 1600 m. The NL refractive indices, n2, and the two-photon absorption (TPA) coefficient, β, have been evaluated using the Z-scan technique. Values of n2≈ 10-15 - 10-14 cm2/W of electronic origin were measured and negligible TPA coefficients (β < 0.003 cm/GW) were determined. The response time of the nonlinearity is faster than 100 fs as determined using the Kerr shutter technique. The figure-of-merit usually considered for all-optical switching, T = 2βλ/n2 , indicates that AG are very good materials for ultrafast switches at telecom wavelengths. © 2007 IEEE.
Resumo:
Composite films made of lead zirconate titanate ceramic particles coated with polyaniline and poly(vinylidene fluoride) - PZT-PAni/PVDF were produced by hot pressing the powder mixtures in the desired ceramic volume fraction. The ceramic particles were coated during the polyaniline synthesis and the conductivity of the conductor polymer was controlled by different degrees of protonation. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac and dc electrical measurements, the longitudinal d33 piezo coefficient and the photopyroelectric response. Results showed that the presence of PAni increased the dielectric permittivity of the composite and allowed better efficiency in the poling process, which increased the piezo- and pyroelectric activities of the composite film and reduced both the poling time and the poling electric field. The thermal sensing of the material was also analyzed, showing that this composite can be used as pyroelectric sensor. © 2013 IOP Publishing Ltd.
Resumo:
Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.