74 resultados para Protein Sequence Analysis
Resumo:
A collection of 237,954 sugarcane ESTs was examined in search of signal transduction genes. Over 3,500 components involved in several aspects of signal transduction, transcription, development, cell cycle, stress responses and pathogen interaction were compiled into the Sugarcane Signal Transduction (SUCAST) Catalogue. Sequence comparisons and protein domain analysis revealed 477 receptors, 510 protein kinases, 107 protein phosphatases, 75 small GTPases, 17 G-proteins, 114 calcium and inositol metabolism proteins, and over 600 transcription factors. The elements were distributed into 29 main categories subdivided into 409 sub-categories. Genes with no matches in the public databases and of unknown function were also catalogued. A cDNA microarray was constructed to profile individual variation of plants cultivated in the field and transcript abundance in six plant organs (flowers, roots, leaves, lateral buds, and 1(st) and 4(th) internodes). From 1280 distinct elements analyzed, 217 (17%) presented differential expression in two biological samples of at least one of the tissues tested. A total of 153 genes (12%) presented highly similar expression levels in all tissues. A virtual profile matrix was constructed and the expression profiles were validated by real-time PCR. The expression data presented can aid in assigning function for the sugarcane genes and be useful for promoter characterization of this and other economically important grasses.
Resumo:
Vírus do gênero Begomovirus são transmitidos por mosca-branca Bemisia tabaci G., e constituem um dos problemas fitossanitários sérios em diversas culturas. Plantas de pimentão coletadas em oito regiões do Estado de São Paulo, foram submetidas a extração de DNA total e PCR com primers universais e degenerados para begomovírus, que amplificam parte da região codificadora para a proteína capsicial. Os dados indicam a presença de begomovírus em pimentão nas cinco regiões coletadas. Análise das seqüências do DNA viral e análise filogenética revelaram identidade com dois begomovírus nativo da América. Tomato severe rugose virus - ToSRV (AY029750) e com Tomato yellow vein streak virus (ToYVSV, AY829113), espécies descritas infectando tomateiro no Brasil. A presença de begomovírus em pimentão foi verificada nas regiões de Alvinlândia, Ubirajara, Botucatu, Elias-Fausto, Paulínia, Mogi Guaçu, Paranapanema e Pirajú.
Resumo:
OBJETIVO: O presente estudo teve como objetivo avaliar os genes PROP1 e HESX1 em um grupo de pacientes com displasia septo-óptica (DSO) e deficiência hormonal hipofisária (combinada - DHHC; ou deficiência isolada de GH - DGH). Onze pacientes com apresentação clínica e bioquímica consistente com DHHC, DGH ou DSO foram avaliados. SUBJECTS and METHODS: em todos os pacientes, o gene HESX1 foi analisado pelo sequenciamento direto e, nos casos de DHHC, o gene PROP1 foi também sequenciado. RESULTADOS: Um polimorfismo no gene HESX1 (1772 A > G; N125S) foi identificado em um paciente com DSO. Foram encontrados três pacientes portadores da variação alélica 27 T > C; A9A e 59 A > G; N20S no éxon 1 do gene PROP1. Mutações no gene PROP1 e HESX1 não foram identificadas nesses pacientes com DGH, DHHC e DSO esporádicos. CONCLUSÃO: Alterações genéticas em um ou diversos outros genes ou mecanismos não genéticos devem estar implicados nesse processo patogênico.
Resumo:
Within about 30 years the Brazilian buffalo (Bubalus bubalis) herd will reach approximately 50 million head as a result of the great adaptive capacity of these animals to tropical climates, together with the good productive and reproductive potential which make these animals an important animal protein source for poor and developing countries. The myostatin gene (GDF8) is important in the physiology of stock animals because its product produces a direct effect on muscle development and consequently also on meat production. The myostatin sequence is known in several mammalian species and shows a high degree of amino acid sequence conservation, although the presence of non-silent and silent changes in the coding sequences and several alterations in the introns and untranslated regions have been identified. The objective of our work was to characterize the myostatin coding regions of B. bubalis (Murrah breed) and to compare them with the Bos taurus regions looking for variations in nucleotide and protein sequences. In this way, we were able to identify 12 variations at DNA level and five alterations on the presumed myostatin protein sequence as compared to non double-muscled bovine sequences.
Resumo:
Purpose: Interferon regulatory factor 6 encodes a member of the IRF family of transcription factors. Mutations in interferon regulatory factor 6 cause Van der Woude and popliteal pterygium syndrome, two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic Mutations in interferon regulatory factor 6 between two large geographically distinct collections of families with Van der Woude and between one collection of families with popliteal pterygium syndrome. Methods: We performed direct sequence analysis of interferon regulatory factor 6 exons oil samples from three collections, two with Van der Woude and one with popliteal pterygium syndrome. Results: We identified mutations in interferon regulatory factor 6 exons in 68% of families in both Van der Woude collections and in 97% of families with popliteal pterygium syndrome. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the interferon regulatory factor 6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the Van der Woude collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the popliteal pterygium syndrome collection were missense. Further, the missense mutations associated with popliteal pterygium syndrome were localized significantly to exon 4, at residues that are predicted to bind directly to DNA. Conclusion: The nonrandom distribution of mutations in the interferon regulatory factor 6 exons suggests a two-tier approach for efficient mutation screens for interferon regulatory factor 6. The type and distribution of mutations are consistent with the hypothesis that Van der Woude is caused by haploinsufficiency of interferon regulatory factor 6. Oil the other hand, the distribution of popliteal pterygium syndrome-associated mutations suggests a different, though not mutually exclusive, effect oil interferon regulatory factor 6 function. Genet Med 2009:11(4):241-247.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The majority of patients with chronic hepatitis C fail to respond to antiviral therapy. The genetic basis of this resistance is unknown. The quasispecies nature of HCV may have an important implication concerning viral persistence and response to therapy. The HCV nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy. To evaluate whether the NS5A quasispecies pre-treatment composition of HCV 1a/1b is related to responsiveness to combined pegylated interferon (PEG-IFN) and Ribavirin therapy, detailed analyses of the complete NS5A were performed. Fifteen full-length NS5A clones were sequenced from 11 pretreatment samples of patients infected with genotype 1 HCV (3 virological sustained responders, 4 non-responders, and 4 end-of-treatment responders). Our study could not show a significant correlation between the mean number of mutations in HCV NS5A before treatment and treatment outcome, and the phylogenetic construction of complete NS5A sequences obtained from all patients failed to show any clustering associated with a specific response pattern. No single amino acid position was associated with different responses to therapy in any of the NS5A regions analyzed, and mutations were clustered downstream the ISDR, primarily in the V3 region. We observed that the CRS and NLS regions of the NS5A protein were conflicting for some variables analyzed, although no significant differences were found. If these two regions can have antagonistic functions, it seems viable that they present different mutation profiles when compared with treatment response. The patient sample that presented the lowest genetic distance values also presented the smallest number of variants, and the most heterogeneous pattern was seen in the end-of-treatment patients. These results suggest that a detailed molecular analysis of the NS5A region on a larger sample size may be necessary for understanding its role in the therapy outcome of HCV 1a/1b infection. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The protein content of many snake venoms often includes one or more phospholipases A(2) (PLA(2)). In recent years a growing number of venoms from snakes of Agkistrodon, Bothrops and Trimeresurus species have been shown to contain a catalytically inactive PLA(2)-homologue in which the highly conserved aspartic acid at position 49 (Asp49) is substituted by lysine (Lys49). Although demonstrating little or no catalytic activity, these Lys49-PLA(2)s disrupt membranes by a Ca2+-independent mechanism of action. In addition, this family of PLA(2)s demonstrates myotoxic and cytolytic pharmacological activities, however the structural bases underlying these functional properties are poorly understood. Through the application of X-ray crystallography in combination with biophysical and bioinformatics techniques, we are studying structure/function relationships of Lys49-PLA(2)s. We here present results of a systematic X-ray crystallographic and amino acid sequence analysis study of Lys49-PLA(2)s and propose a model to explain the Ca2+ independent membrane damaging activity. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Restriction fragment length polymorphism (RFLP) and sequence analyses of the PCR-amplified 16S-23S rDNA intergenic spacer (ITS) were used for differentiating Acidithiobacillus thiooxidans strains from other related acidithiobacilli, including A. ferrooxidans and A. caldus. RFLP fingerprints obtained with AluI, DdeI, HaeIII, HinfI and MspI enabled the differentiation of all Acidithiobacillus reference strains into species groups. The A. thiooxidans strains investigated (metal mine isolates) yielded identical RFLP patterns to the A. thiooxidans type strain (ATCC 19377(T)), except for strain DAMS, which had a distinct pattern for all enzymes tested. Fourteen A. ferrooxidans mine strains were assigned to 3 RFLP groups, the majority of which were grouped with A. ferrooxidans ATCC 23270(T). The spacer region of one representative strain from each of the RFLP groups obtained was subjected to sequence analysis, in addition to eleven additional A. thiooxidans strains isolated from sediment and water samples, and A. caldus DSM 8584(T). The tRNA(IIe) and tRNA(Ala) genes, present in all strains analyzed, showed high sequence similarity. Phylogenetic analysis of the ITS sequences differentiated all three Acidithiobacillus species. Inter- and infraspecific genetic variations detected were mainly due to the size and sequence polymorphism of the ITS3 region. Mantel tests showed no significant correlation between ITS sequence similarity and the geographical origin of strains. The results showed that the 16S-23S rDNA spacer region is a useful target for the development of molecular-based methods aimed at the detection, rapid differentiation and identification of acidithiobacilli. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Strains of Acidithiobacillus ferrooxidans exhibited differences in the inhibition of Fe(2+) oxidation in the presence of 250 mm of cadmium, zinc, and manganese sulfates in respirometric assays. Strains LR and I35 were practically not inhibited, whereas strains SSP and V3 showed significant inhibition (30-70%). Analysis by SDS-PAGE of total proteins from cells grown in the absence of metal sulfates showed different profiles between the more tolerant strains (LR and 135) and the more susceptible ones (SSP and V3). Total proteins of strains LR and V3 were also resolved by two-dimensional polyacrylamide gel electrophoresis (2-DE). A set of major proteins (40, 32, 22, and 20 kDa) could be identified only in the more tolerant strain LR. Our results show that protein profiles analysis could differentiate A. ferrooxidans strains that considerably differ in the tolerance to metal sulfates and present low genomic similarity as revealed by Random Amplified Polymorphic DNA (RAPD) data obtained previously in our laboratory.
Resumo:
The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5' end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the β subunit of eIF2 and its archaeal counterpart (aIF2β). aIF2β differs from eIF2β in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2β, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2β, but not in eIF5. We show that the sequence of eIF2B homologous to aIF2β is sufficient for binding eIF2γ, the only subunit with which it interacts, and comprises, at the most, 78 residues, eIF5 does not interact with eIF2γ, despite its similarity with eIF2β, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
To find the regions having a major influence on the bioluminescence spectra of railroad worm luciferases, we constructed new chimeric luciferases switching the fragments from residues 1-219 and from 220-545 between Phrixotrix viviani (PxvGR; λmax = 548 nm) green light-emitting luciferase and Phrixothrix hirtus (PxhRE; λmax = 623 nm) red light-emitting luciferases. The emission spectrum (λmax = 571 nm) and KM for luciferin in the chimera PxRE220GR (1-219, PxhRE; 220-545, PxvGR) suggested that the region above residue 220 of PxvGR had a major effect on the active site. However, switching the sequence between the residues 226-344 from PxvGR luciferase into PxhRE (PxREGRRE) luciferase resulted in red light emission (λmax = 603 nm), indicating that the region 220-344 by itself does not determine the emission spectrum. Furthermore, the sequence before residue 220 of the green-emitting luciferase is incompatible for light emission with the sequence above residue 220 of PxhRE. These results suggest that the fragments before and after residue 220, which correspond to distinct subdomains, may fold differently in the green- and red-emitting luciferases, affecting the active site conformation.