96 resultados para Probe for chromosome translocation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. © 2013 Lima et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family.Results: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes.Conclusions: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. © 2013 Parise-Maltempi et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXTO:Translocações robertsonianas (TR) estão entre os rearranjos estruturais balanceados mais comuns em humanos e compreendem a fusão da cromatina completa do braço longo de dois cromossomos acrocêntricos. No entanto, são raras as translocações não Robertsonianas envolvendo esses cromossomos.RELATO DE CASO:Nós descrevemos uma translocação não balanceada de novo envolvendo os cromossomos 15 e 21. A recém-nascida era filha de uma mãe de 29 anos e de um pai de 42 anos, casal não consanguíneo. Os achados clínicos levaram ao diagnóstico de síndrome de Down (SD) com defeitos cardíacos congênitos graves (persistência do canal arterial e defeito do septo atrioventricular completo), além de baixos comprimento e peso ao nascimento (< 5o e < 10o percentil em curvas de medidas específicas para SD, respectivamente). A análise citogenética convencional revelou o cariótipo 46,XX,der(15)(15pter→15q26.2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unlike the X chromosome, the mammalian Y chromosome undergoes evolutionary decay resulting in small size. This sex chromosomal heteromorphism, observed in most species of the fossorial rodent Ctenomys, contrasts with the medium-sized, homomorphic acrocentric sex chromosomes of closely related C. maulinus and C. sp. To characterize the sequence composition of these chromosomes, fluorescent banding, self-genomic in situ hybridization, and fluorescent in situ hybridization with an X painting probe were performed on mitotic and meiotic plates. High molecular homology between the sex chromosomes was detected on mitotic material as well as on meiotic plates immunodetected with anti-SYCP3 and anti-gamma H2AX. The Y chromosome is euchromatic, poor in repetitive sequences and differs from the X by the loss of a block of pericentromeric chromatin. Inferred from the G-banding pattern, an inversion and the concomitant prevention of recombination in a large asynaptic region seems to be crucial for meiotic X chromosome inactivation. These peculiar findings together with the homomorphism of Ctenomys sex chromosomes are discussed in the light of the regular purge that counteracts Muller's ratchet and the probable mechanisms accounting for their origin and molecular homology. (C) 2014 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agaricus blazei Murill is a medicinal mushroom native to Brazil. The present work assessed the clastogenic and anticlastogenic potential of organic extracts (ethanol and chloroform/methanol) from the lineage AB97/11 in chinese hamster CHO-K-1 (wild type) and CHO-xrs5 (repair deficient) cells using the chromosome aberration (CA) and sister chromatid exchange (SCE) assays. In these experimental conditions were observed: (a) anticlastogenic effect at concentrations of 0.06 and 0.09% of the EtOH extract and at the 0.03 and 0.06% concentrations of the C/MetOH extract in CHO-K-1; (b) absence of protector effect on CHO-xrs5 cells; and (c) absence of protector effect in the SCE assay. These results indicate that organic extracts of A. blazei lineage AB97/11 present bio-antimutagenic type protective activity. (C) 2003 Elsevier B.V. B.V. All rights reserved.