32 resultados para Polynomial Invariants
Resumo:
The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.
Resumo:
In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets.