39 resultados para PnD
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For a better understanding of the processing at the nucleus tractus solitarius (NTS) level of the autonomic and respiratory responses to peripheral chemoreceptor activation, herein we evaluated the role of glutamatergic neurotransmission in the intermediate (iNTS) and caudal NTS (cNTS) on baseline respiratory parameters and on chemoreflex-evoked responses using the in situ working heart-brain stem preparation (WHBP). The activities of phrenic (PND), cervical vagus (cVNA), and thoracic sympathetic (tSNA) nerves were recorded before and after bilateral microinjections of kynurenic acid (Kyn, 5 nmol/20 nl) into iNTS, cNTS, or both simultaneously. In WHBP, baseline sympathetic discharge markedly correlated with phrenic bursts (inspiration). However, most of sympathoexcitation elicited by chemoreflex activation occurred during expiration. Kyn microinjected into iNTS or into cNTS decreased the postinspiratory component of cVNA and increased the duration and frequency of PND. Kyn into iNTS produced no changes in sympathoexcitatory and tachypneic responses to peripheral chemoreflex activation, whereas into cNTS, a reduction of the sympathoexcitation, but not of the tachypnea, was observed. The pattern of phrenic and sympathetic coupling during the chemoreflex activation was an inspiratory-related rather than an expiratory-related sympathoexcitation. Kyn simultaneously into iNTS and cNTS produced a greater decrease in postinspiratory component of cVNA and increase in frequency and duration of PND and abolished the respiratory and autonomic responses to chemoreflex activation. The data show that glutamatergic neurotransmission in the iNTS and cNTS plays a tonic role on the baseline respiratory rhythm, contributes to the postinspiratory activity, and is essential to expiratory-related sympathoexcitation observed during chemoreflex activation.
Resumo:
Bisphenol A (BPA) is one hormonally active chemical with potential deleterious effects on reproductive organs, including breast and prostate. In contrast, genistein (GEN) is the major phytoestrogen of soy that presents potential protective effects against hormone-dependent cancers, including that of the prostate. Thus, pregnant Sprague-Dawley rats were treated with BPA at 25 or 250 μg/kg/day by gavage from gestational day (GD) 10-21 with or without dietary GEN at 250 mg/kg/chow (∼5.5 mg/kg/day). Then, male offspring from different litters were euthanized on post-natal day (PND) 21 and 180. At PND21, BPA 25 exposure induced early prostatic changes while dietary GEN attenuated some deleterious actions this xenoestrogen on epithelial cell proliferation levels, androgen receptor expression and prostatic architecture in male offspring. At PND180, a significant increase in incidence of prostatic multifocal inflammation/reactive hyperplasia and atypical hyperplasia were observed in male offspring from dams that received BPA 25. On the other hand, maternal GEN feeding attenuated some the adverse effects of BPA 25 on prostate disease at late-in-life. This way, the present findings point to preventive action of dietary GEN on deleterious effects of gestational BPA exposure in both early and late prostate development in offspring F1.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)