142 resultados para Phase formation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho é descrever a síntese e a caracterização óptica de uma solução sólida de óxido de zircônio contendo ítrio e lantânio. Foram misturados citrato de zircônio, nitrato de ítrio e nitrato de lantânio nas proporções 94 mol% ZrO2-6 mol% Y2O3 e 92 mol% ZrO2-6 mol % Y2O3-2 mol % La2O3. A análise de espectroscopia de absorção no infravermelho com tranformada de Fourier mostra material orgânico em decomposição e a análise térmica mostra a transformação de fases da zircônia tetragonal para monoclínica, a perda de água e a desidroxilação do zircônio. A análise por difração de raios X mostra formação de fases homogênea de ZrO2-Y2O3-La2O3 demonstrando que a adição de lantânio não provoca formação de fases, promovendo uma solução sólida baseada em zircônia cúbica. Os espectros de fotoluminescência mostram bandas de absorção em 562 nm e 572 nm (350 ºC) e bandas de absorção específicas em 543 nm, 561 nm, 614 nm e 641 nm (900 ºC). O efeito fotoluminescente a baixas temperaturas é causado por defeitos como (Y Zr,Y O)', (2Y Zr,V O)'' e V O. As emissões em 614 nm e 641 nm são causadas pela transição O-2p -> Zr-4d. Uma emissão em 543 nm pode ser atribuída a centros LaO8 com transição O-2p -> La-5d.
Resumo:
Foram avaliadas, durante o processo de sinterização, as propriedades mecânicas de peças cerâmicas a base de argila com adição de rocha sedimentar. Foram preparados corpos de prova com 0, 20, 40, 60 e 80% em peso de rocha adicionada ao material argiloso. As peças foram sinterizadas nas temperaturas de 500, 800, 900, 1000, 1100 e 1200 °C e, posteriormente, submetidas à análise de difração de raios X e a ensaios tecnológicos Os resultados de difração de raios X mostram que a rocha sedimentar apresenta argilominerais micáceos enquanto o material argiloso possui a caulinita como fase principal. Técnicas de análises térmicas e difração de raios X das diferentes misturas mostram reações que indicam transformação (inversão do quartzo), decomposição (perda de hidróxidos) e formação de fase (mulita) durante o aquecimento das amostras. Os ensaios tecnológicos mostram que a adição da rocha sedimentar melhora algumas propriedades do material sinterizado, auxiliada pela presença de fundentes. Entretanto, a presença de quartzo na rocha dificulta a formação da fase mulita. A formação de novas fases e as transformações ocorridas no aquecimento e resfriamento das amostras ajuda explicar as propriedades tecnológicas dos materiais cerâmicos.
Resumo:
Pb0.91Ca0.1TiO3 powders (PCT) were prepared by mechanochemical synthesis from high-energy ball milling process. The influence of milling time on the phase formation, crystal structure, specific surface area, density and powder morphology was observed. We adopted the Rietveld refinement technique to investigate the crystal structure of the PCT powders. Scanning electron microscopy (SEM) analysis revealed that PCT powders milled for 5 h showed a wide distribution of particle agglomerates while milled for 35 h showed a decrease in agglomerates size. Further prolongation of milling time resulted in the agglomerates growth. (C) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This study consisted of an investigation of the influence of powder preparation on the phase and chemical compositions and microstructure of 9.5/65/35 PLZT materials sintered in an oxygen atmosphere. The powders with the formula Pb0.905La0.095(Zr0.65Ti0.35)(0.976)O-3+3.5 wt.% PbO were prepared by the polymeric organometallic precursor method (the Pechini method and the partial oxalate procedure). Phase composition was determined by X-ray diffraction of powder and EDS analysis, while grain size was determined based on the micrograph obtained from SEM. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Thin films of BaBi2Ta2O9 (BBT) composition were prepared through the metal organic decomposition method. The crystallinity, phase formation, crystallite size and morphology of the thin films were measured as a function of the type of substrate, stoichiometry of solution and process variables such as thickness and temperature. The thin films were investigated by grazing incidence X-ray diffractometry and atomic force microscopy (AFM) techniques. For the sample without excess of bismuth, diffraction peaks other than that of the BBT phase were observed. A well crystallized BBT single phase was observed for films prepared from a solution with 10% excess of bismuth, deposited on Si/Pt substrate, with a thickness up to 150 nm and sintered at temperatures of 700 degreesC. The thin BBT phase films heat-treated at 600 degreesC presented a diffraction pattern characteristic of samples with lower degree of crystallinity whereas for the thin films heat-treated at 800 degreesC, we observed the presence of other phases than the BBT. For the thin film deposited on the Sin+ substrate, we observe that the peaks corresponding to the BBT phase are broader than that observed on the samples deposited on the Pt and Si/Pt substrates. No variation of average crystallite size was observed as the excess of Bi increased from 10 to 20%. AFM images for the samples showed that the increasing the amount of bismuth promotes grain growth. The average surface roughness measured was in the range of 16-22 nm showing that the bismuth amount had no or little effect on the roughness of films. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we report the synthesis procedure, crystallographic, structural and magnetic properties of the Li2ZnTi3O8 spinel obtained using a modified polymeric precursor method. This synthesis method generates very reactive and property-controlled nanoparticles. The samples were characterized using X-ray powder diffraction (XRD) associated to the Rietveld refinement method, thermogravimetric analysis (TG), specific surface area, scanning electron microscopy (SEM) and magnetic susceptibility measurements.The phase formation temperature of the lithium zinc titanate spinel was observed to decrease due to the homogeneity and highly controlled nanometric particle size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Welding in the dentistry has been used for great part of the specialized dentist-surgeons in the implants area to solve prosthesis supported by implant adaptation problems. The development of new equipments Laser and TIG allowed a larger use of these processes in the prosthesis production. In this work, it was studied welded joints made by Laser and TIG, using commercial purity titanium, cpTi, applied in prosthesis supported by implants. The weld characterizations were carried out by light microscopy, EDS_elementary mapping, microhardness and tensile test. Through metallographic characterization, the weld bead presented a martensitic microstructure in the Laser welding process, originated from shear provoked by deformations in the lattice. This caused structural changes of the transformed area, which determines a fine plate-like morphology. In the weld bead from TIG, besides presenting higher hardness, was observed formation of Widmansttaten structure, which is characteristic of a geometric model, resulted of new phase formation along of the crystallographic plans. The martensitic structure is more refined than Widmansttaten structure, due to the high-speed cooling (10(3)degrees C/s) imposed by the Laser process.
Resumo:
This paper aims to describe the synthesis of the semi-crystalline and crystalline powder of lanthanum doped with zirconium titanate (65/35), LZT through Pechini method. The analysis done by Raman demonstrated that semi-crystalline phase at 550 degrees C and crystalline phase after 600 degrees C were formed. The XRD pattern shows the ZrTiO4 phase formation demonstrating that La substitutions into the lattice take place. The calcined powder at different temperatures shows a semi-crystalline phase presenting photoluminescence effect when processed at low temperatures. From 300 to 400 degrees C a broadband is observed at 563 nm and 568 nm, respectively. Defects creation such as: Zr3+ center dot Vo(center dot center dot) and Ti3+ - V-O(center dot center dot), Zr and Ti replaced by La with vacancy formation, impurities and imperfections contributed to the photoluminescence effect. However, the main emission is due to a reverse Ti4+ -> O2- or/and Zr4+ -> O2- transition that occur within a regular titanate or zirconate eight-fold coordination [BO8-delta], B = Zr4+, Ti4+. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bismuth titanate, Bi(4)Ti(3)O(12) (BIT) nanosized powders have been successfully synthesized via high energy mechanochemical activation. The phase formation of BIT, crystal structure, microstructure, crystallite size and specific surface area were followed by XRD, scanning electron microscopy (SEM) and the BET specific surface area measurements. The BIT milled 2 h shows the orthorhombic crystalline structure with small amount of amorphous phase. The microstructure of Bi(4)Ti(3)O(12) ceramics sintered at 1000 degrees C for 12h exhibit plate-like grain structure.
Resumo:
PLZT(9/65/35) obtained by association between the Pechini method (ZT) and partial oxalate (PLZT) was prepared. The stoichiometric phase and monophasic (cubic) PLZT obtained by calcination did not occur after sintering. The sintering process, by using two stages, caused a liquid phase formation due to a PbO excess (5 and 10 wt%). Samples with high density (similar to 8 g/cm(3)) and optical transparency(similar to 12%) were obtained. However, an equilibrium between the excess of PbO of sample/atmosphere PbO leads to a segregated PbO phase on the boundaries of the microstructure. A diffusion of Zr, Ti and La ions from PLZT to PbO phase promoted a stoichiometric deviation of the matrix and modified the optical and dielectric characteristics. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.
Resumo:
Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (PMN-PT) powders were prepared by using a Ti-modified columbite precursor (MNT) obtained by the polymeric precursor method. The innovation consists in the preparation of Ti-modified columbite in order to react directly with a stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. It has been shown that titanium oxide forms a solid solution with columbite (MN) and does not affect the obtaining of a single-phase columbite precursor. Thus, a high amount of perovskite phase can be obtained by reaction with PbO at 800 degreesC for 2 h. Effects of K and Li additives on the structure of MNT and PMN-PT were studied. X-ray diffraction studies were carried out to verify the phase formation at each processing step and these data were used for structural refinement by the Rietveld method. Both K and Li additives increase the crystallinity of MNT powders, being this effect more intense for the Li-doped samples. For PMN-PT samples the additives cause an insignificant decrease in the amount of perovskite phase. The morphology of the PMN-PT powder depends on the type of the additive. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Pure and W-doped PZT ceramics (PZT and PZTW) were prepared by a hybrid process consisting in the association of polymeric precursor and partial oxalate methods. The phase formation was investigated by simultaneous thermal analysis (TG/DSC) and X-ray diffraction (XRD). The effect of W doping PZT and their electrical properties was evaluated. Substitution of W by Ti leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The influence of niobia addition on the phase formation and dielectric properties of Pb(Zr0.45Ti0.55)O-3 powder prepared from polymeric precursor was analyzed. The weight fraction and unit-cell volume of the tetragonal phase decreased, and the mass fraction of the rhombohedral phase increased, with increasing niobia concentration. The rhombohedral unit-cell volume increased up to 5 mol% of added Nb and then decreased. Small amounts of pyrochlore and tetragonal zirconia phases were observed in PZT powder with more than 10 mol% Nb. These results were interpreted as an indication that the Nb ion was substituted for the zirconium ion in the tetragonal phase. For sintered PZT samples at 1100 degrees C, no free-zirconia phase was observed. The dielectric constant increased with the niobia addition up to 5 mol% and decreased for higher concentrations. The Curie temperature decreased with niobia addition up to 10 mol% before the formation of pyrochlore phase. (C) 2000 Elsevier B.V. Ltd. All rights reserved.