66 resultados para Ph Control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some factors influencing the growth and production of extracellular lipase by Rhizopus oligosporus were studied. Highest yields of enzyme were obtained when Tweens were the carbon source. Soybean meal extract supported good growth and enzyme production. Carbohydrates, vegetable oils, proteins or amino acids did not stimulate lipase production. The fungus grew well with carbohydrate- or protein-supplemented media but not with oils, unless emulsified with a non-metabolizable gum. The production of biomass in static cultures was maximum at 35-40°C after 4 d at pH 5.5. The yield of lipase was maximum at 25°C after 3 d at pH 6.5. Shaking cultures enhanced growth but decreased lipase production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate long-term pH changes in cavities prepared in root surface dentin of extracted teeth after obturation of the root canal with gutta-percha and a variety of sealers containing calcium hydroxide. After cleaning and shaping, root canals in 50 recently extracted, human single-rooted teeth were divided into five groups. Each of four groups was obturated with gutta-percha and either Sealapex, Sealer 26, Apexit, or CRCS, all of which contain calcium hydroxide. The remaining group served as the control and was not obturated with gutta-percha or sealer. Cavities were prepared in the facial surface of the roots in the cervical and middle regions. The pH was measured in these dentinal cavities at the initiation of the experiment, and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days after obturation. Results indicate that the pH at the surface of the root does not become alkaline when calcium hydroxide cements are used as root canal sealers. Regardless of the sealer used, the observed pattern of pH change was not different from that seen in the control group of roots that were not treated with sealer. It is concluded that calcium hydroxide-containing cements, although suitable for use as root canal sealants, do not produce an alkaline pH at the root surface. If such a pH change is related to treatment of root resorption, these sealants do not contribute to this treatment. Copyright © 1996 by The American Association of Endodontists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the pH, after defined periods of time, in cavities prepared in the facial surface of the cervical, middle, and apical regions of roots obturated with calcium hydroxide pastes. Root canal instrumentation was performed on 40 recently extracted, single-rooted human teeth. Cavities 1.5 mm in diameter and 0.75 mm in depth were prepared in the cervical, middle, and apical regions of the facial surface of each root. Teeth were randomly divided into four groups. One group was left unobturated and served as a control. The three remaining groups were obturated with either aqueous calcium hydroxide, calcium hydroxide mixed with camphorated monochlorophenol, or Pulpdent pastes. Access cavities and apical foramina were closed with Cavit. Each tooth was stored individually in a vial containing unbuffered isotonic saline. pH at the surface was measured in the cervical, middle, and apical cavities at 0 and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days. Results indicate that hydroxyl ions derived from calcium hydroxide pastes diffused through root dentin at all regions over the experimental period of 120 days. The pattern of pH change at the tooth surface was similar in all regions of the root, regardless of the type of calcium hydroxide paste used. This was a rapid rise in pH from a control value of pH 7.6, to greater than pH 9.5 by 3 days, followed by a small decline to pH 9.0 over the next 18 days, before finally rising and remaining at, or above pH 10.0 for the remainder of the experimental period. Pulpdent paste in the apical region was the only exception in this pattern, producing a pH rise nearly one full unit below the other pastes, pH 9.3. These results indicate that, for all pastes tested, a high pH is maintained at the root surface for at least 120 days. Copyright © 1996 by The American Association of Endodontists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and the extracellular amylase production by Aspergillus ochraceus were studied in a stationary culture medium. Maximum growth rate of this fungus was found after 5 days of incubation at 30° C, but maximum amylase production was obtained after 2 days. The highest amylase production were attained with lactose, maltose, xylose and starch as carbon sources. The extracellular amylase production and mycelial growth were influenced by the concentration of starch. Other carbohydrates supported growth but did not induce amylase synthesis and glucose repressed it, indicating catabolite repression in this microorganism. The presence of both mechanisms of induction and repression suggests that at least these multiple forms of regulation are present in A. ochraceus. Of the nitrogen sources tested, casaminoacids, ammonium nitrate and sodium nitrate stimulated the highest yield of amylase. Optimal amylase production was obtained at pH 5.0, but enzyme activity was found only in the 4.0-6.0 pH range. These results were probably due to the inhibitory effect of NH 4 +-N in the culture medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: In the present investigation, the anticariogenic effect of fluoride released by two products commonly applied in infants was evaluated. Methods: Bovine sound enamel blocks were randomly allocated to each one of the treatment groups: control (C), varnish (V) and diamine silver fluoride solution (D). The blocks were submitted to pH cycles in an oven at 37°C. Next, surface and cross-sectional microhardness were assessed to calculate the percentage loss of surface microhardness (%SML) and the mineral loss (ΔZ). The fluoride present in enamel was also determined. Results: F/Px10 -3 (ANOVA, p<0.05) in the 1 st layer of enamel before pH-cycling were (C, V and D): 1.61 a; 21.59 b and 3.98 c. The %SMH (Kruskal-Wallis, p<0.05) were: -64.0 a, -45.2 b and -53.1 c. %ΔZ values (ANOVA, p<0.05) were: -18.7 a, -7.7 b and -17.3 a. Conclusion: The data suggested that the fluoride released by varnish showed greater interaction with sound enamel and provided less mineral loss when compared with silver diamine solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paperwork presents the complete circuitry used to build a microcontroller-based pH-meter. Key control software is also discussed. An industry-standard glass combination electrode has been employed for pH detection. Electrode parameter extraction procedure is presented. Good measurement results, with 1 % error, have been attained. Copyright© (2006) by the International Measurement Federation (IMEKO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a pH-cycling model for verifying the dose-response relationship in fluoride-releasing materials on remineralization in vitro. Sixty bovine enamel blocks were selected for the surface microhardness test (SMH 1). Artificial caries lesions were induced and surface microhardness test (SMH 2) was performed. Forty-eight specimens were prepared with Z 100, Fluroshield, Vitremer and Vitremer 1/4 diluted - powder/liquid, and subjected to a pH-cycling model to promote remineralization. After pH-cycling, final surface microhardness (SMH 3) was assessed to calculate percent recovery of surface microhardness (%SMH R). Fluoride present in enamel (μg F/mm 3) and in the pH-cycling solutions (μg F) was measured. Cross-sectional microhardness was used to calculate mineral content (ΔZ). There was no significant difference between Z 100 and control groups on analysis performed on - %SMH R, ΔZ, μ F and μ F/mm 3 (p>0.05). Results showed a positive correlation between %SMH R and μg F/mm 3 (r=0.9770; p=0.004), %SMH R and μg F (r=0.9939; p=0.0000001), DZ and μg F/mm 3 (r=0.9853; p=0.0002), ΔZ and μg F (r=0.9975; p=0.0000001) and between μg F/mm 3 and μg F (r=0.9819; p=0.001). The pH-cycling model proposed was able to verify in vitro dose-response relationship of fluoride-releasing materials on remineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: This in vitro study evaluated the effect of calcium hydroxide on pH changes of the external medium after intracoronal bleaching. Materials and methods: A total of 50 extracted human premolars were prepared and filled with gutta-percha and endodontic sealer. The teeth were randomly divided into five groups according to the bleaching agents employed: (a) Sterile cotton pellet with distilled water (control group); (b) sodium perborate and distilled water; (c) sodium perborate and 10% carbamide peroxide; (d) sodium perborate and 35% hydrogen peroxide; (e) 35% hydrogen peroxide. The teeth were stored in vials containing distilled water and the pH values of the medium surrounding the teeth were analyzed. After 7-day storage, the bleaching agent was removed and replaced by calcium hydroxide, and the distilled water was changed, in which the teeth were kept stored for further 14 days. Measurement of pH of the external medium (distilled water) was performed 7 days after insertion of the bleaching agents, immediately, 7 and 14 days after insertion of the calcium hydroxide. Data were submitted to statistical analysis by the two-way ANOVA and Tukey,s test. Results: There were pH changes of the external medium at 7-day period after bleaching procedures. These results confirmed the diffusion of bleaching agents to the external medium. Conclusion: Calcium hydroxide increased the external medium pH and was effective for pH alkalinization after intracoronal bleaching. Clinical significance: Intracoronal bleaching of endodontically treated teeth may cause cervical root resorption. A possible explanation for this process is the passage of bleaching agents to the periodontal tissues yielding an inflammatory process. In an attempt to keep the neutrality of the periodontal pH, the calcium hydroxide has been recommended.Results of this study showed that this material should be always used after intracoronal bleaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluoride was introduced into dentistry over 70 years ago, and it is now recognized as the main factor responsible for the dramatic decline in caries prevalence that has been observed worldwide. However, excessive fluoride intake during the period of tooth development can cause dental fluorosis. In order that the maximum benefits of fluoride for caries control can be achieved with the minimum risk of side effects, it is necessary to have a profound understanding of the mechanisms by which fluoride promotes caries control. In the 1980s, it was established that fluoride controls caries mainly through its topical effect. Fluoride present in low, sustained concentrations (sub-ppm range) in the oral fluids during an acidic challenge is able to absorb to the surface of the apatite crystals, inhibiting demineralization. When the pH is re-established, traces of fluoride in solution will make it highly supersaturated with respect to fluorhydroxyapatite, which will speed up the process of remineralization. The mineral formed under the nucleating action of the partially dissolved minerals will then preferentially include fluoride and exclude carbonate, rendering the enamel more resistant to future acidic challenges. Topical fluoride can also provide antimicrobial action. Fluoride concentrations as found in dental plaque have biological activity on critical virulence factors of S. mutans in vitro, such as acid production and glucan synthesis, but the in vivo implications of this are still not clear. Evidence also supports fluoride's systemic mechanism of caries inhibition in pit and fissure surfaces of permanent first molars when it is incorporated into these teeth pre-eruptively. © 2011 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To evaluate antibiofilm activity against Enterococcus faecalis, pH and solubility of AH Plus, Sealer 26, Epiphany SE, Sealapex, Activ GP, MTA Fillapex (MTA-F) and an experimental MTA-based Sealer (MTA-S). Methodology: Sealer samples were manipulated and stored for 2 or 7 days. Prepared sealers were evaluated by a modified direct contact test (DCT) for 5 h, 10 h or 15 h with biofilm previously induced on bovine dentine for 14 days. In the control group, the biofilm was not exposed to the sealers. The number of colony-forming units (CFU mL-1) in the remaining biofilm was determined. Sealer solubility was assessed by the percentage of mass loss after 15 h of immersion in distilled water. Sealer pH was measured at 5 h, 10 h and 15 h. Statistical analysis was performed using Kruskal-Wallis and Dunn or anova and Tamhane's T2 tests, at 5% significance. Results: At 2 days post-manipulation, the DCT showed that Sealapex and MTA-F were associated with a reduction in the number of bacteria in all 3 contact periods evaluated, compared with the control group (P < 0.05). At 7 days, Sealapex had the greatest antibiofilm action at 10 h and 15 h. Sealapex had the highest pH values 2 and 7 days post-manipulation. Regarding the solubility, at 2 days the highest values were observed for MTA-F, MTA-S, Sealapex and Activ GP (P < 0.05). At 7 days, MTA-S and MTA-F had greater solubility than the other materials (P < 0.05). AH Plus had the lowest solubility for both post-manipulation periods (P < 0.05). Conclusion: Sealapex and MTA-F were associated with a reduction in the number of bacteria in biofilms and had greater solubility. The high solubility and pH may be related to the antibacterial activity of these materials. © 2012 International Endodontic Journal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)