144 resultados para Peat humic substances


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to investigate the adsorption of micronutrients in humin and to verify the ability to release these elements in water. The first step was to determine the adsorption capacity of humin for several essential plant micronutrients and check the kinetic parameters. The order of adsorption was Zn < Ni < Co < Mn < Mo < Cu < Fe, whereas Zn showed maximum values of ca. 2.5 mg g-1 and Fe values of ca. 0.5 mg g-1 for systems containing 1 g of humin. Iron presented higher percentages of release (ca. 100%) and Co the lowest percentages (0.14%). The findings suggested that the use of humin enriched with micronutrients can be a promising alternative for the fertilization of agricultural soils, with the additional benefit of incorporating organic matter present in the form of humic substances into the soil and improving the agricultural productivity. © 2013 Sociedade Brasileira de Química.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work was studied the distribution of Cr, Ni, Cu, Cd and Pb in humic fractions with different molecular size. The HS were extracted from waters (AHS), surface sediments (HESS), interface water sediment (HSIS) and bottom sediment (HSBS) collected in the Anhumas surface water collection reservoir, located in the district of Araraquara - São Paulo State Brazil. The humic substances were extracted by procedures recommended by International Humic Substances Society (IHSS). After purification by dialysis, the humic substances were fractionated using a multistage tangential flow ultrafiltration system. The fractionation patterns of HS characterized a mass distribution relatively uniform among the fractions with different molecular sizes, with larger values in the fractions F-2 (20.8%) and F-4 (23.8%), Except for the ions Pb(II) and Cu(II), which presented relatively higher concentrations in the fractions F-2 and F-4, respectively. In general, chromium, nickel, cadmium and lead have similar distributions in the five fractions with larger and medium molecular sizes (F-1 to F-5). With relation to the mass distributions in the different humic substances fractions extracted from sediment samples collected at three depth, they presented 42-48% of HS in the fractions with larger molecular sizes (F-1 and F-2), 29-31% in the middle fractions (F-3 and F-4) and 13-20% in the fractions with smaller molecular sizes (F-5 and F-6). In general, the metallic ions presented distributions similar among the respective fractions F-1 to F-6, Exceptions for Pb(II) and M(II) in surface sediment with concentrations relatively smaller in the fractions F-2 and F-4, respectively,

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fenton 's reagent was used as coagulant agent to treat water with high true color (100 ± 5 HU) caused by the introduction of humic substances extracted from peat, using dissolved air flotation. The pair value of coagulant dosage x coagulation pH was optimized to posterior construction of coagulation diagrams, reaching apparent color removal efficiency slightly superior to 60%. It was tried to simulate a treatment with complete cycle, carrying out an experiment with sand filtration after flotation, obtaining an effluent with excellent quality, presenting remnant apparent color, turbidity and absorbance of 253.7 nm less or equal to 2 HU, 0.40 TU and 0.009 cm -1, respectively, and residual total iron < 0.005 mg/L and DOC < 0.001 mg/L.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, aquatic humic substances (HS) were extracted by use of adsorbent XAD 8 and the acid humic fraction (AH) was separated throught acidification. After being purified by Hyphan resin and dialyze, the aquatic AH was characterized using Fourier-transform infrared spectroscopy and elemental analysis. The influence of the aquatic HA and electrolyte concentrations, pH and aquatic AH-metal complexation time on the conformation was investigated using UV/Vis spectroscopic studies, employing the equation suggested by Doty and Steiner. The results indicated that the acid humic flexible macromolecule assumes a condensed form at acid and alkaline pH. Other factors favoring condensed conformations are longer metal complexation time (ageing) and higher aquatic AH and electrolyte concentrations. Thus considering the strong influence of the investigated parameters in the structural conformation of the humic macromolecule, we conclude that studies using UV/Vis spectroscopy to estimate the concentration, aromaticity, humification degree of the aquatic AH and so on, require rigorous control over the experimental conditions employed to provide a correct interpretation of the analytical results. ©2006 Sociedade Brasileira de Química.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV