35 resultados para Pavement Wear.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of fluoride gels, supplemented or not with sodium hexametaphosphate (HMP), on enamel erosive wear in situ. Twelve healthy volunteers wore palatal appliances containing four bovine enamel discs. Subjects were randomly allocated into four experimental phases (double-blind, crossover protocol) according to the gels: Placebo (no fluoride or HMP), 1% NaF, 2% NaF, and 1% NaF+9% HMP. Enamel discs were selected after polishing and surface hardness analysis, and treated only once with the respective gels prior to each experimental phase. Erosion (ERO) was performed by extra-oral immersion of the appliance in 0.05M citric acid, pH 3.2 (four times/day, five minutes each, 5 days). Additional abrasion (ERO+ABR) was produced on only two discs by toothbrushing with fluoridated dentifrice after ERO (four times/day, 30s, 5 days). The specimens were submitted to profilometry and hardness analysis. The results were analyzed by two-way ANOVA and the Student-Newman-Keuls test (p<0.05). The 1% NaF+9% HMP gel promoted significantly lower enamel wear for ERO compared to the other groups, being statistically lower than 1% NaF and Placebo for ERO+ABR. Similarly, the lowest values of integrated lesion area were found for 1% NaF+9% HMP and 2% NaF, respectively, for ERO and ERO+ABR. The addition of HMP to the 1% NaF gel promoted greater protective effect against ERO and ERO+ABR compared to the 1% NaF gel, achieving similar protective levels to those seen for the 2% NaF gel. Gel containing 1% NaF+9% HMP showed a high anti-erosive potential, being a safer alternative when compared to a conventional 2% NaF gel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this work was to study the simultaneous wear-corrosion of titanium (Ti) in the presence of biofilms composed of Streptococcus mutans and Candida albicans. Both organisms were separately grown in specific growth media, and then mixed in a medium supplemented with a high sucrose concentration. Corrosion and tribocorrosion tests were performed after 48 h and 216 h of biofilm growth. Electrochemical corrosion tests indicated a decrease in the corrosion resistance of Ti in the presence of the biofilms although the TiO2 film presented the characteristics of a compact oxide film. While the open circuit potential of Ti indicated a tendency to corrosion in the presence of the biofilms, tribocorrosion tests revealed a low friction on biofilm covered Ti. The properties of the biofilms were similar to those of the lubricant agents used to decrease the wear rate of materials. However, the pH-lowering promoted by microbial species, can lead to corrosion of Ti-based oral rehabilitation systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and objective: Glass ionomer cement, which was first introduced in Dentistry in 1972, presents good qualities such as aesthetics, fluoride release and adhesion to dental tissues. Because of its preventive characteristics regarding to dental caries, glass ionomer cement has been used for Atraumatic Restorative Treatment (ART), as reported by Frencken and Holmgren [6], meeting the principles announced by the World Health Organization (WHO) for application to large population groups without regular access to dental care. Material and methods: In this present study, the abrasive wear strength of two glass-ionomer cements (Vidrion R® and ChemFlex®) was evaluated through toothbrushing machine. Classic® toothbrushes with soft bristles and Sorriso® dentifrice were also used for the study. Results: Student-t test showed significant difference between both groups, with tobs value = 9.4411 at p < 0.05. Conclusion: It can be concluded that the wear rate caused by toothbrush/dentifrice was higher for Vidrion R® (52.00 mg) than ChemFlex® (5.57 mg).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oral cavity is a complex environment where corrosive substances from dietary, human saliva, and oral biofilms may accumulate in retentive areas of dental implant systems and prostheses promoting corrosion at their surfaces. Additionally, during mastication, micromovements may occur between prosthetic joints causing a relative motion between contacting surfaces, leading to wear. Both processes (wear and corrosion) result in a biotribocorrosion system once that occurs in contact with biological tissues and fluids. This review paper is focused on the aspects related to the corrosion and wear behavior of titanium-based structures in the oral environment. Furthermore, the clinical relevance of the oral environment is focused on the harmful effect that acidic substances and biofilms, formed in human saliva, may have on titanium surfaces. In fact, a progressive degradation of titanium by wear and corrosion (tribocorrosion) mechanisms can take place affecting the performance of titanium-based implant and prostheses. Also, the formation of wear debris and metallic ions due to the tribocorrosion phenomena can become toxic for human tissues. This review gathers knowledge from areas like materials sciences, microbiology, and dentistry contributing to a better understanding of bio-tribocorrosion processes in the oral environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)