372 resultados para Parasitoid rearing
Resumo:
A reliable method of labeling is needed to study dispersal of the braconid parasitoid, Lysiphlebus testaceipes (Cresson), an important biological control of greenbugs, Schizaphis graminum (Rondani), on grain sorghum, Sorghum bicolor (L.) Moench. The feasibility of using aqueous solutions of rubidium chloride (RbCl) applied as a foliar spray or soil drench to label greenbugs and L. testaceipes developing within greenbugs was studied. Laboratory and field studies were conducted to identify the minimal concentration of RbCl to assure labeling of greenbugs and wasps, persistence of Rb throughout the wasp's life span, mobility of Rb to unsprayed sorghum leaves, and feasibility of studying dispersal using a release-recapture technique with Rb-labeled wasps. Both greenbugs and wasps could be labeled using RbCl at concentrations of 2,500-10,000 ppm. Rubidium content in labeled wasps did not significantly vary during the first 7 d after emergence. Greenbugs feeding on unsprayed leaves were labeled up to 4 wk after leaves were sprayed. Rb-labeled wasps were found at the maximum trap distance from the release site (60 m) within 1 d after release.
Resumo:
The objective this work is to define an effective method for following the development of immatures of Apis mellifera from metamorphosis to the emergence of the adult, under conditions allowing the application of diverse treatments. The results showed the best method to be when broods with 5th instar larvae and prepupae were maintained in incubators with the temperature and humidity controlled at 34°C and 65 to 70% respectively.
Resumo:
In this study, the costs and gross income related to the production of pacu Piaractus mesopotamicus juveniles were evaluated. This evaluation took into consideration a semi-intensive rearing, with direct stocking of the larvae into fertilized ponds (IL 0), or an initial intensive larviculture system, in which the larvae were fed in the laboratory for 3 (IL 3), 6 (IL 6), or 9 days (IL 9) before being transferred to the ponds. After 45 days of rearing, a gradual increase in production costs was observed as intensive larviculture time increased. Gross income also increased due to better survival rates (11.0, 25.3, 45.4, and 54.0% for IL 0, IL 3, IL 6, and IL 9, respectively). Therefore, increased profits were obtained under intensive larviculture (US$ 0.27, US$ 6.07, US$ 11.99, and US$ 13.16 per one thousand larvae in treatments IL 0, IL 3, IL 6, and IL 9, respectively). In a larger scale production simulation, the results obtained with initial intensive larviculture also showed evident economic advantages, confirming the feasibility of this system in comparison with the direct stocking of larvae in ponds for the production of pacu juveniles. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The goal of this study was to evaluate the quality of Cotesia flavipes from different bio-factories as biological control agents. We evaluated biological characteristics of the parasitoids throughout their lifespan, and measured the body length and width, abdomen width, thorax width and width and length of the right forewing of female and male parasitoids. Our results showed that the number of males and pupal viability were similar among the bio-factories; the number of emerged females was greater in bio-factories I and II; the egg-pupa period and the pupal period were shorter in bio-factory IV; and a greater longevity was found in bio-factories II and III. Sex ratio (at approximately 60% females) was satisfactory (in terms of suitability for release) across all bio-factories. For morphometric measurements, the body, abdomen and wing widths were similar in males; however, thorax width was greater in the males from bio-factory I; bio-factory III produced females with the highest body length; bio-factory I produced females with the greatest abdomen width; bio-factories III and IV produced females with the greatest wing length. Among the bio-factories studied, bio-factory IV produced the best quality C. flavipes, with respect to the greatest number of parasitoids per pupal mass (a mean of 57% more parasitoids) in a satisfactory sex ratio, and with the shortest developmental time, which facilitates faster rearing in the laboratory. Studies such as this, which assess the quality of a mass-produced C. flavipes, are crucial for the continued use of this parasitoid in controlling Diatraea saccharalis in the field. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Diatraea saccharalis Fabr. (Lepidoptera: Crambidae) is a major sugarcane pest in Brazil. The management of infested areas is based on the release of Cotesia flavipes (Cameron) (Hymenoptera: Braconidae), a parasitoid of D. saccharalis larvae, but there are doubts about the effectiveness of C. flavipes, primarily regarding its rate of dispersal in sugarcane fields. Thus, the objective of this study was to evaluate the dispersal of C. flavipes in a sugarcane field and suggest a release method that provides higher parasitoid efficiency. The study was carried out in four areas of approximately 1 ha, in which stalk pieces containing 20 D. saccharalis larvae were distributed in a rectangular grid, and 12,000 C. flavipes adults were released at four points, that were 50 m apart and 25 m from the field border. Three days later, the D. saccharalis larvae were recovered and kept in the laboratory until they reached pupal stage or C. flavipes emergence. Parasitism varied from 13.2% to 42.8%. The random distribution of parasitized larvae was found in one assay. In three areas, the parasitized larvae showed an aggregated distribution, with a range of 15 to 25 m. Since the parasite's success is directly linked to parasitoid dispersion, it would be interesting to move the release points to 30 m from each other because the dispersal may happen in a 15 m radius.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The interactions between the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae McIntoch (Hymenoptera: Braconidae) were evaluated under laboratory conditions. Nymphs of Myzus persicae Sulzer (Hemiptera: Aphididae) were first exposed to parasitoid females for 24 h and then 0, 24, and 48 h afterwards sprayed with a solution of B. bassiana. Likewise, aphids were also sprayed with B. bassiana and then exposed to parasitoids at 0, 24, and 48 h afterwards. Parasitism rate varied from 13 to 66.5%, and were signi_cantly lower in treatments where the two agents were exposed within a 0-24 h time interval compared with the control (without B. bassiana). Parasitoid emergence was negatively affected in treatments with B. bassiana spraying and subsequent exposure to D. rapae. Decreases in longevity of adult females of the D. rapae F1 generation were observed in treatments with B. bassiana spraying. The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV