62 resultados para POROUS POLYMER SCAFFOLDS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: An experimental study was done to assess the ability of the vegetal polymer miniplates and screws to repair defects of the orbital floor.Methods: An artificial standard-sized defect was created in the bony floor of right orbit of 45 albino rabbits. The animals were divided into three experimental groups: control group (G1) involving animals with orbital floor defect and no treatment; titanium group (G2) containing animals with orbital floor defect repaired by titanium miniplates and screws; vegetal polymer group (G3) composed of animals with similar orbital floor defects repaired by vegetal polymer miniplates and screws. Throughout the course of the experiment, the animals were clinically evaluated. At 15, 30 and 60 days after surgery, the animals were killed. They were X-rayed immediately after the floor defect and at the moment of sacrifice. Histological and morphometric evaluation of inflammatory reaction and bone healing was done. Data were statistically evaluated.Results: No implants were extruded. Bone consolidation was similar in G2 and G3 and better than in G1 group animals. Inflammatory reaction was most pronounced in animals of G3 15 days after surgery, and it subsided over time.Conclusion: Vegetal polymer miniplates and screws induces small inflammatory reaction and had the ability to stimulate bone growth with good integration in the orbital floor defect allowing to consider the vegetal polymer adequate option to treat orbital floor defects. Future studies involving long-term follow-up and biomechanical tests to evaluate material resistance to traction are needed.
Resumo:
AIM: To evaluate the host response of the gel and porous polyethylene implants in anophthalmic cavities using the B scan ultrasound.METHODS: Thirty-six white rabbits underwent unilateral enucleation with placement of gel or porous polyethylene spheres implants. The animals were submitted to clinical examination weekly and to ultrasound evaluation on 30, 60 and 90 days after surgery.RESULTS: All rabbits with gel polyethylene spheres, except one, showed implant extrusion probably because the gel spheres have hydrated and increased in volume. The B ultrasound of the gel polyethylene implant did not show vessels inside during the following period. Five animals (27.8%) with porous polyethylene spheres presented implant extrusion after 30 days of surgery. According to B ultrasound, the porous polyethylene implant showed irregular and heterogeneous architecture and reflective peaks similar to vascularized tissues.CONCLUSION: More studies are required to determine the ideal volume of gel polyethylene implant necessary to correct the diminished orbital content in the anophthalmic cavity. The B ultrasound effectiveness showed in this study for anophthalmic socket implants evaluation provides useful information for further in vivo studies and might substitute expensive methods of implants vascularization evaluation,
Resumo:
Purpose: Synthetic hydroxyapatite and porous polyethylene (Polipore) spheres were placed in rabbits' eviscerated cavities to evaluate tissue reaction and volume maintenance.Methods. Fifty-six Norfolk albino rabbits underwent unilateral evisceration and implantation of synthetic hydroxyapatite (H group, 28 animals) or porous polyethylene spheres (P group, 28 animals). Postoperative reactions, animal behavior, and socket conditions were monitored. Light microscopy and morphometric evaluation with statistical analysis of the exenterated orbits were performed at 7, 15, 30, 60, 90, 120, and 180 days. Scanning electron microscopy was appraised 7, 60, and 180 days after surgery.Results: Two animals from the H group and 1 from the P group had extrusion 7 days after surgery. Throughout the experimental period, the synthetic hydroxyapatite caused more inflammation than the porous polyethylene material. Ingrowth in the sphere occurred 7 to 15 days after the surgery in both groups, and the tissue reaction became denser at approximate to60 to 90 days, when bony metaplasia began in the H group. Volume maintenance was better in the P group and with a smaller pseudocapsule surrounding the implanted sphere than in the H group.Conclusions: Clinical findings demonstrated mild inflammation inside the sphere and in the pseudocapsule surrounding it and better cavity volume maintenance in the P group animals. The authors consider porous polyethylene a more suitable material than synthetic hydroxyapatite for use in anophthalmic cavity reconstruction.
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The purpose of this study was to evaluate the sealing ability of castor oil polymer (COP), mineral trioxide aggregate (MTA) and glass ionomer cement (GIC) as root-end filling materials. Forty-five single-rooted human teeth were cleaned and prepared using a step-back technique. The apical third of each root was resected perpendicularly to the long axis direction. All teeth were obturated with gutta-percha and an endodontic sealer. After, a root-end cavity with 1.25-mm depth was prepared using a diamond bur. The specimens were randomly divided into three experimental groups (n = 15), according to the root-end filling material used: G1) COP; G2) MTA; G3) GIC. The external surfaces of the specimens were covered with epoxy adhesive, except the root-end filling. The teeth were immersed in rhodamine B dye for 24 hours. Then, the roots were sectioned longitudinally and the linear dye penetration at the dentin/material interface was determined using a stereomicroscope. ANOVA and Tukey's tests were used to compare the three groups. The G1 group (COP) presented smaller dye penetration, statistically different than the G2 (MTA) and G3 (GIC) groups (p < 0.05). No statistically significant difference in microleakage was observed between G2 and G3 groups (p > 0.05). The results of this study indicate that the COP presented efficient sealing ability when used as a root-end filling material showing results significantly better than MTA and GIC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)