158 resultados para PHOTODYNAMIC THERAPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional treatments for Candidiasis include therapies that promote serious side effects to patients. Recent research indicates the use of red emission laser associated with a blue photosensitizer as a current method for microbial reduction. This study aimed to evaluate the effectiveness of Photodynamic Therapy in the treatment of oral candidiasis in HIV patients. The response to treatment by the photodynamic therapy has been demonstrated successfully in 100% of the total sample, as in the 7th and 21st days, confirmed he complete absence of clinical and cytological lesions. This therapy is enhanced by its easy applicability and no adverse side effects making it an alternative method of effective recommended treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of photodynamic therapy with erythrosine and rose bengal using a light-emitting diode (LED) on planktonic cultures of S. mutans. Ten S. mutans strains, including nine clinical strains and one reference strain (ATCC 35688), were used. Suspensions containing 10 6 cells/mL were prepared for each strain and were tested under different experimental conditions: a) LED irradiation in the presence of rose bengal as a photosensitizer (RB+L+); b) LED irradiation in the presence of erythrosine as a photosensitizer (E+L+); c) LED irradiation only (P-L+); d) treatment with rose bengal only (RB+L-); e) treatment with erythrosine only (E+L-); and f) no LED irradiation or photosensitizer treatment, which served as a control group (P-L-). After treatment, the strains were seeded onto BHI agar for determination of the number of colony-forming units (CFU/mL). The results were submitted to analysis of variance and the Tukey test (p ≤ 0.05). The number of CFU/mL was significantly lower in the groups submitted to photodynamic therapy (RB+L+ and E+L+) compared to control (P-L-), with a reduction of 6.86 log 10 in the RB+L+ group and of 5.16 log 10 in the E+L+ group. Photodynamic therapy with rose bengal and erythrosine exerted an antimicrobial effect on all S. mutans strains studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to histologically and histometrically evaluate the influence of repeated adjunctive antimicrobial photodynamic therapy (aPDT) on bone loss (BL) in furcation areas in rats. Periodontitis was induced by placing a ligature around the mandibular molar in 75 rats. The animals were divided into five groups: the SS group was treated with saline solution (SS); the SRP group received scaling and root planing (SRP); the aPDT1 group received SRP as well as toluidine blue (TBO) and low-level laser therapy (LLLT; InGaAlP, 660 nm; 4.94 J/cm2/point) postoperatively at 0 h; the aPDT2 group received SRP as well as TBO and LLLT postoperatively at 0, 24, 28, and 72 h; and the aPDT3 group received SRP, TBO, and LLLT postoperatively at 0, 48, 96, and 144 h. The area of BL in the furcation region of the molar was histometrically analyzed. Data were analyzed statistically (P < 0.05). Animals treated with a single episode of aPDT showed less BL at days 7 and 30 than those who received only SRP treatment. No significant differences were found among the aPDT groups (P > 0.05). Repeated aPDT did not improve BL reduction when compared to a single episode of aPDT. © 2012 Springer-Verlag London Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate photodynamic therapy (PDT) by using a hematoporphyrin derivative as a photosensitizer and light-emitting diodes (LEDs) as light source in induced mammary tumors of Sprague-Dawley (SD) rats. Twenty SD rats with mammary tumors induced by DMBA were used. Animals were divided into four groups: control (G1), PDT only (G2), surgical removal of tumor (G3), and submitted to PDT immediately after surgical removal of tumor (G4). Tumors were measured over 6 weeks. Lesions and surgical were LEDs lighted up (200 J/cm2 dose). The light distribution in vivo study used two additional animals without mammary tumors. In the control group, the average growth of tumor diameter was approximately 0.40 cm/week. While for PDT group, a growth of less than 0.15 cm/week was observed, suggesting significant delay in tumor growth. Therefore, only partial irradiation of the tumors occurred with a reduction in development, but without elimination. Animals in G4 had no tumor recurrence during the 12 weeks, after chemical induction, when compared with G3 animals that showed 60 % recurrence rate after 12 weeks of chemical induction. PDT used in the experimental model of mammary tumor as a single therapy was effective in reducing tumor development, so the surgery associated with PDT is a safe and efficient destruction of residual tumor, preventing recurrence of the tumor. © 2012 Springer-Verlag London Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effects of pre-irradiation time (PIT) on curcumin (Cur)-mediated photodynamic therapy (PDT) against planktonic and biofilm cultures of reference strains of Candida albicans, Candida glabrata and Candida dubliniensis. Materials and methods: Suspensions and biofilms of Candida species were maintained in contact with different concentrations of Cur for time intervals of 1, 5, 10 and 20 min before irradiation and LED (light emitting diode) activation. Additional samples were treated only with Cur, without illumination, or only with light, without Cur. Control samples received neither light nor Cur. After PDT, suspensions were plated on Sabouraud Dextrose Agar, while biofilm results were obtained using the XTT-salt reduction method. Confocal Laser Scanning Microscopy (CLSM) observations were performed to supply a better understanding of Cur penetration through the biofilms after 5 and 20 min of contact with the cultures. Results: Different PITs showed no statistical differences in Cur-mediated PDT of Candida spp. cell suspensions. There was complete inactivation of the three Candida species with the association of 20.0 μM Cur after 5, 10 and 20 min of PIT. Biofilm cultures showed significant reduction in cell viability after PDT. In general, the three Candida species evaluated in this study suffered higher reductions in cell viability with the association of 40.0 μM Cur and 20 min of PIT. Additionally, CLSM observations showed different intensities of fluorescence emissions after 5 and 20 min of incubation. Conclusion: Photoinactivation of planktonic cultures was not PIT-dependent. PIT-dependence of the biofilm cultures differed among the species evaluated. Also, CLSM observations confirmed the need of higher time intervals for the Cur to penetrate biofilm structures. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background -  Pythiosis is a life-threatening disease caused by Pythium insidiosum. Photodynamic therapy (PDT) is an alternative treatment to surgery that uses the interaction of a photosensitizer, light and molecular oxygen to cause cell death. Objectives -  To evaluate the effect of PDT on the in vitro growth of P. insidiosum and in an in vivo model of pythiosis. Methods -  For in vitro studies, two photosensitizers were evaluated: a haematoporphyrin derivative (Photogem®) and a chlorine (Photodithazine®). AmphotericinB was also evaluated, and the control group was treated with sterile saline solution. All experiments (PDT, porphyrin, chlorine and light alone, amphotericinB and saline solution) were performed as five replicates. For in vivo studies, six rabbits were inoculated with 20,000 zoospores of P. insidiosum, and an area of 1cm3 was treated using the same sensitizers. The PDT irradiation was performed using a laser emitting at 660nm and a fluence of 200J/cm2. Rabbits were clinically evaluated daily and histopathological analysis was performed 72h after PDT. Results -  For in vitro assays, inhibition rates for PDT ranged from 60 to 100% and showed better results in comparison to amphotericinB. For the in vivo assays, after PDT, histological analysis of lesions showed a lack of infection up to 1cm in depth. Conclusions and clinical importance -  In vitro and in vivo studies showed that PDT was effective in the inactivation of P. insidiosum and may represent a new approach to treating pythiosis. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the effect of photodynamic therapy (PDT) on the multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans. Standardized fungal and bacterial suspensions were cultivated appropriately for each species and inoculated in 96-well microtiter plates for mix-biofilm formation. After 48 h of incubation, the biofilms were submitted to PDT (P + L+) using Photodithazine® (PDZ) at 100, 150, 175, 200, or 250 mg/mL for 20 min and 37.5 J/cm2 of light-emitting diode (LED) (660 nm). Additional samples were treated only with PDZ (P + L-) or LED (P-L+), or neither (control, P-L-). Afterwards, the biofilms were evaluated by quantification of colonies (CFU/mL), metabolic activity (XTT reduction assay), total biomass (crystal violet staining), and confocal scanning laser microscopy (CSLM). Data were analyzed by one-way ANOVA and Tukey tests (p < 0.05). Compared with the control, PDT promoted a significant reduction in colonies viability of the three species evaluated with 175 and 200 mg/mL of PDZ. PDT also significantly reduced the metabolic activity of the biofilms compared with the control, despite the PDZ concentration. However, no significant difference was found in the total biomass of samples submitted or not to PDT. For all analysis, no significant difference was verified among P-L-, P + L-, and P-L+. CSLM showed a visual increase of dead cells after PDT. PDT-mediated PDZ was effective in reducing the cell viability of multispecies biofilm. © 2013 Springer-Verlag London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the antimicrobial effect of antimicrobial photodynamic therapy (aPDT) in alveolar treatment of areas with induced periodontitis. Thirty male Wistar rats were subjected to ligature-induced periodontal disease (PD) in the first left inferior molars, while the right side molars did not receive ligatures. After 7 days of PD evolution, ligatures were removed from the left side, and the first left and right mandibular molars were extracted. Afterwards, animals were divided into groups according to the following treatments: control (C)-no treatment; mechanical debridement (MD)-mechanical debridement and irrigation with saline solution; and aPDT-mechanical debridement, irrigation with toluidine blue O (TBO), and 1 min of laser irradiation (GaAlAs, 660 nm, 30 mW, 32 J/cm2, 60 s). Ligatures were removed and samples of the alveolar content after extraction and after each treatment were collected for microbial processing by real-time polymerase chain reaction with specific primers for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. Data were submitted to statistical analysis by multiple comparison tests (McNemar test; p < 0.05). T. denticola was not found in the collected samples. A. actinomycetemcomitans and P. gingivalis were found in ligature samples. Tooth socket samples without periodontitis induction presented lesser microbial charge than samples with induced periodontitis (p < 0.05). aPDT significantly reduced A. actinomycetemcomitans levels on the left side (p < 0.05). It was concluded that aPDT was an effective antimicrobial treatment for tooth sockets in areas affected by induced periodontitis. © 2013 Springer-Verlag London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pododermatitis is currently one of most frequent and important clinical complications in seabirds kept in captivity or in rehabilitation centers. In this study, five Magellanic penguins with previous pododermatitis lesions on their footpad were treated with photodynamic therapy (PDT). All PDT treated lesions successfully regressed and no recurrence was observed during the 6-month follow-up period. PDT seems to be an inexpensive and effective alternative treatment for pododermatitis in Magellanic penguins encouraging further research on this topic. (C) 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 mu M) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P-), photosensitizer application alone (L-P+), and application of saline as control (L-P-). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study sought to assess if discoloration of tooth structures occurs after photodynamic therapy (PDT) and to determine the efficacy of a protocol to remove the photosensitizers. Background data: PDT has been used in root canal treatment to enhance cleaning and disinfection of the root canal system. PDT uses a low power laser in association with a dye as a photosensitizer. Photosensitizers can induce staining of the dental structures, resulting in an unaesthetic appearance. Methods: Forty teeth were randomly divided into four groups according to the photosensitizer used and pre-irradiation time: 0.01% methylene blue for 5 min (MB5); 0.01% methylene blue for 10 min (MB 10); 0.01% toluidine blue for 5 min (TB5); and 0.01% toluidine blue for 10 min (TB 10). Specimens were irradiated with a 660 nm diode laser with a 300 mu m diameter optical fiber, at 40 mW power setting for 3 min. Immediately after, the photosensitizers were removed with Endo-PTC cream +2.5% sodium hypochlorite (NaOCl). The shade was measured by a Vita Easyshade spectrophotometer based on the CIELAB color system (L*a*b* values) at three different experimental times: before PDT (T0), immediately after PDT (T1), and after removal of the photosensitizer (T2). Results: The results showed a decrease in the averages of the L*a*b* coordinate values after PDT (T1) in all the groups, when compared with the number at T0, with a significant statistical difference in group MB10. After photosensitizer removal (T2), all the values of the coordinates increased with significant statistical differences (p < 0.05) between T1 and T2 in L* and a*. Conclusions: It can be concluded that both methylene blue and toluidine blue dyes cause tooth discoloration, and that Endo-PTC cream associated with 2.5% NaOCl effectively remove these dyes, regardless of the pre-irradiation time used for PDT.