225 resultados para PARABRACHIAL NUCLEUS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 mug), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of bilateral injections of the local anesthetic, lidocaine, into the lateral parabrachial nucleus (LPBN) on the dipsogenic and presser responses induced by intracerebroventricular (i.c.v.) injection of angiotensin II (ANG II). Centrally injected ANG II (50 ng/l mu l) induced water intake (10.2 +/- 0.8 ml/h) and presser responses (22 +/- 1 mmHg). Prior bilateral injection of 10% lidocaine (200 nl) into the LPBN increased the water intake (14.2 +/- 1.4 ml/h), but did not change the presser response (17 +/- 1 mmHg) to i.c.v. ANG II. Lidocaine alone injected into the LPBN also induced a presser response (23 +/- 3 mmHg). These results showing that bilateral LPBN injection of lidocaine increase water intake induced by i.c.v. ANG II are consistent with electrolytic and neurotoxic lesion studies and suggest that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II. These results also provide evidence that it is feasible to reversibly anesthetize this brain area to facilitate fluid-related ingestive behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effects of bilateral injections of the nonselective CCK receptor antagonist proglumide or CCK-8 into the lateral parabrachial nuclei (LPBN) on the ingestion of 0.3 M NaCl and water induced by intracerebroventricular injection of ANG II or by a combined treatment with subcutaneous furosemide (Furo) + captopril (Cap). Compared with the injection of saline (vehicle), bilateral LPBN injections of proglumide (50 mu g . 200 nl(-1). site(-1)) increased the intake of 0.3 ill NaCl induced by intracerebroventricular ANG II (50 ng/1 mu l). Bilateral injections of proglumide into the LPBN also increased ANG II-induced water intake when NaCl was simultaneously available, but not when only water was present. Similarly, the ingestion of 0.3 M NaCl and water induced by the treatment with Furo (10 mg/kg) + Cap (5 mg/kg) was increased by bilateral LPBN proglumide pretreatment. Bilateral CCK-8 (0.5 mu g . 200 nl(-1). site(-1)) injections into the LPBN did not change Furo + Cap-induced 0.3 M NaCl intake but reduced water consumption. When only water was available after intracerebroventricular ANG II, bilateral LPBN injections of proglumide or CCK-8 had no effect or significantly reduced water intake compared with LPBN vehicle-treated rats. Taken together, these results suggest that CCK actions in the LPBN play a modulatory role on the control of NaCl and water intake induced by experimental treatments that induce hypovolemia and/or hypotension or that mimic those states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus (LPBN) on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT1/2 receptor antagonist methysergide (4 mu g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α2-Adrenoceptor activation with moxonidine (α2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water. Angiotensin II and osmotic signals are suggested to stimulate meal-induced water intake. Therefore, in the present study we investigated the effects of bilateral injections of moxonidine into the LPBN on food deprivation-induced food intake and on meal-associated water and 0.3 M NaCl intake. Male Holtzman rats with cannulas implanted bilaterally into the LPBN were submitted to 14 or 24 h of food deprivation with water and 0.3 M NaCl available (n = 6-14). Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased meal-associated 0.3 M NaCl intake (11.4 ± 3.0 ml/120 min versus vehicle: 2.2 ± 0.9 ml/120 min), without changing food intake (11.1 ± 1.2 g/120 min versus vehicle: 11.2 ± 0.9 g/120 min) or water intake (10.2 ± 1.5 ml/120 min versus vehicle: 10.4 ± 1.2 ml/120 min) by 24 h food deprived rats. When no food was available during the test, moxonidine (0.5 nmol) into the LPBN of 24 h food-deprived rats produced no change in 0.3 M NaCl intake (1.0 ± 0.6 ml/120 min versus vehicle: 1.8 ± 1.1 ml/120 min), nor in water intake (0.2 ± 0.1 ml/120 min versus vehicle: 0.6 ± 0.3 ml/120 min). The results suggest that signals generated during a meal, like dehydration, for example, not hunger, induce hypertonic NaCl intake when moxonidine is acting in the LPBN. Thus, activation of LPBN inhibitory mechanisms seems necessary to restrain sodium intake during a meal. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Activation of GABAB receptors with baclofen into the lateral parabrachial nucleus (LPBN) induces ingestion of water and 0.3 M NaCl in fluid replete rats. However, up to now, no study has investigated the effects of baclofen injected alone or combined with GABAB receptor antagonist into the LPBN on water and 0.3 M NaCl intake in rats with increased plasma osmolarity (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used.Results: In fluid replete rats, baclofen (0.5 nmol/0.2 μl), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (14.3 ± 4.1 vs. saline: 0.2 ± 0.2 ml/210 min) and water (7.1 ± 2.9 vs. saline: 0.6 ± 0.5 ml/210 min). In cell-dehydrated rats, bilateral injections of baclofen (0.5 and 1.0 nmol/0.2 μl) into the LPBN induced an increase of 0.3 M NaCl intake (15.6 ± 5.7 and 21.5 ± 3.5 ml/210 min, respectively, vs. saline: 1.7 ± 0.8 ml/210 min) and an early inhibition of water intake (3.5 ± 1.4 and 6.7 ± 2.1 ml/150 min, respectively, vs. saline: 9.2 ± 1.4 ml/150 min). The pretreatment of the LPBN with 2-hydroxysaclofen (GABAB antagonist, 5 nmol/0.2 μl) potentiated the effect of baclofen on 0.3 M NaCl intake in the first 90 min of test and did not modify the inhibition of water intake induced by baclofen in cell-dehydrated rats. Baclofen injected into the LPBN did not affect blood pressure and heart rate.Conclusions: Thus, injection of baclofen into the LPBN in cell-dehydrated rats induced ingestion of 0.3 M NaCl and inhibition of water intake, suggesting that even in a hyperosmotic situation, the blockade of LPBN inhibitory mechanisms with baclofen is enough to drive rats to drink hypertonic NaCl, an effect independent of changes in blood pressure. © 2013 Kimura et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Gamma-aminobutyric acid A (GABAA) receptor activation with muscimol in the lateral parabrachial nucleus (LPBN) induces water and 0.3 M NaCl intake. The purpose of this study was to investigate whether a local inflammatory event, such as periodontal disease (PD), is able to alter the effects of muscimol on water and 0.3 M NaCl intake in fluid-replete rats and in rats treated with furosemide (FURO) combined with captopril (CAP) injected subcutaneously. Design: Male Wistar rats were divided into two groups: with PD and those without PD (control condition). Fifteen days after PD, both groups had cannulas implanted bilaterally into the LPBN. Results: In fluid-replete rats without PD, injections of muscimol (0.5 nmol/0.2 μl) into the LPBN induced 0.3 M NaCl and water intake and a pressor response. In fluid-replete rats with PD, a decrease was observed in water intake and pressor response but not in 0.3 M NaCl intake. In control rats with FURO + CAP treatment, injections of muscimol into the LPBN increased 0.3 M NaCl and water intake. In PD rats with FURO + CAP treatment, a decrease was observed in 0.3 M NaCl and water intake after muscimol in the LPBN. Alveolar bone loss and interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) plasmatic concentration were higher in PD rats in comparison with controls. Conclusion: These results suggest that PD is able to reduce the pressor response and the dipsogenic and natriorexigenic effects induced by the activation of GABAA receptors in the LPBN, probably due to the elevation of the plasmatic concentration of pro-inflammatory cytokines IL-6 and TNF-α. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Injections of noradrenaline into the lateral parabrachial nucleus (LPBN) increase arterial pressure and 1.8% NaCl intake and decrease water intake in rats treated with the diuretic furosemide (FURO) combined with a low dose of the angiotensin converting enzyme inhibitor captopril (CAP). In the present study, we investigated the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO + CAP-induced water and 1.8% NaCl intake. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Bilateral injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced 1.8% NaCl intake (12.2 ± 3.5, vs., saline: 4.2 ± 0.8 ml/180 min), reduced water intake and strongly increased arterial pressure (50 ± 7, vs. saline: 1 ± 1 mm Hg). The blockade of the α1 adrenoceptors with the prazosin injected intraperitoneally abolished the pressor response and increased 1.8% NaCl and water intake in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. The deactivation of baro and perhaps volume receptors due to the cardiovascular effects of prazosin is a mechanism that may facilitate water and NaCl intake in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. Therefore, the activation of α2 adrenoceptors with noradrenaline injected into the LPBN, at least in dose tested, may not completely remove the inhibitory signals produced by the activation of the cardiovascular receptors, particularly the signals that result from the extra activation of these receptors with the increase of arterial pressure. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1±3.9 vs. saline: 2.2±0.7)ml/210min, n=8) and water (17.7±1.9 vs. saline: 2.9±0.5ml/210min). Conversely, 0.3M NaCl (27.8±2.1ml/210min) and water (22.8±2.3ml/210min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation. © 2013 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.