456 resultados para Oreochromis niloticus L.
Resumo:
Water contaminants have a high potential risk for the health of populations. Protection from toxic effects of environmental water pollutants primarily involves considering the mechanism of low level toxicity and likely biological effects in organisms who live in these polluted waters. The biomarkers assessment of oxidative stress and metabolic alterations to cadmium exposure were evaluated in Nile tilapia, Oreochromis niloticus. The fish were exposed to 0.35, 0.75, 1.5, and 3.0 mg/l concentrations of Cd2+ (CdCl2) in water for 60 days. Fish that survived cadmium exposure showed a metabolic shift and a compensatory development for maintenance of the body weight gain. We observed a decreased glycogen content and decreased glucose uptake in white muscle. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities were also decreased, indicating that the glycolytic capacity was decreased in this tissue. No alterations were observed in total protein content in white muscle due to cadmium exposure suggesting a metabolic shift of carbohydrate metabolism to maintenance of the muscle protein reserve. There was an increase in glucose uptake, CK increased activity, and a clear increase of LDH activity in red muscle of fish with cadmium exposure. Since no alterations were observed in lipoperoxide concentration, while antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were changed in the liver and the red and white muscle of fish with cadmium exposure, we can conclude that oxygen free radicals are produced as a mediator of cadmium toxicity. Resistance development is related with increased activities of antioxidant enzymes, which were important in the protection against cadmium damage, inhibiting lipoperoxide formation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Problemas metabólicos observados em produções intensivas de tilápias do Nilo (Oreochromis niloticus) têm sido relacionados à deficiência de colina nas rações. Com o objetivo de avaliar o efeito da suplementação dietética da colina na nutrição da espécie, rações purificadas contendo 0; 375; 750; 1.125; 1.500 ou 1.875 mg de cloreto de colina por kg, foram administradas ad libitum por 42 dias a tilápias do Nilo (5,09 ± 0,14 g), estocados em gaiolas de PVC atóxico (volume = 60 L), alojadas em caixas de polipropileno de 1000 L, em ambiente com condições controladas de temperatura e luminosidade, num delineamento experimental em blocos incompletos casualizados, com três parcelas por bloco (n=5). O ganho de peso (GDP) e o Ãndice de conversão alimentar (ICA) de todos os tratamentos foram superiores ao controle. Não foram observadas diferenças para a quantidade de lipÃdios no fÃgado e tecido corporal, e sobrevivência (S%). Num segundo experimento, os peixes foram alimentados com rações suplementadas com 1.250 ou 2.500 mg de cloreto de colina por kg; ou 1.000; 2.000 ou 3.000 mg de betaÃna por kg. Não foram observadas diferenças significativas para S% e acúmulo de lipÃdeos hepáticos ou corporais; o ICA e GDP dos tratamentos suplementados com colina foram superiores aos dos tratamentos suplementados com betaÃna, mas não diferiram entre si. NÃveis de suplementação superiores a 375 mg de cloreto de colina por kg de alimento melhoram o ICA e o GDP da tilápia do Nilo, mas a betaÃna não substitui efetivamente a colina em rações para a espécie.
Resumo:
Os efeitos de diferentes nÃveis de fibra bruta na digestibilidade aparente e velocidade de trânsito gastrintestinal de tilápias do Nilo alimentadas com dietas purificadas fornecidas foram avaliados. Utilizaram-se cinco aquários circulares (250 L) para alimentação, dotados de sistema fechado de filtragem, reabastecimento e aquecimento da água, e cinco aquários de digestibilidade (100 L), dotados de sistema individual de filtragem, reabastecimento e aquecimento. Utilizaram-se 32 peixes por aquário, com peso inicial médio de 30,65 ± 0,50 g. Adotou-se o delineamento inteiramente casualizado caracterizado por cinco nÃveis de fibra bruta (2,5; 5,0; 7,5; 10,0 e 12,5%) e 5 repetições. Concluiu-se que nÃveis crescentes de fibra bruta, em dietas purificadas, interferem significativamente na digestibilidade aparente da matéria seca, proteÃna bruta e do extrato etéreo. NÃveis de até 5,00% de fibra bruta não diminuiu a digestibilidade aparente da matéria seca e da proteÃna bruta e 7,50% de fibra bruta não diminuiu a digestibilidade aparente do extrato etéreo da dieta purificada pela tilápia do Nilo. Entretanto, o aumento do teor de fibra bruta da dieta diminui significativamente o tempo de trânsito gastrintestinal.
Resumo:
The present study was designed to determine the optimum dietary zinc supplementation to Nile tilapia juveniles (13.3 +/- 1.13 g), by using vegetable-based diets supplemented with increasing levels of zinc from commercial-grade zinc sulfate monohydrate, a previously determined zinc source of higher bioavailability. The basal diet was supplemented with 25, 50, 100, 150, 200, 300, or 400 mg/kg Zn. The experiment was conducted in forty 250-l tanks arranged in a recirculating water system. The experimental period was divided in two phases. For the first 10-week experimental phase, fish were fed satiation diets supplemented with increasing levels of zinc. For the second 5-week experimental phase, fish that were fed diets supplemented with 0-300 mg/kg Zn during the first phase were fed the 400 mg/kg Zn-supplemented diet; fish fed the diet supplemented with 400 mg/kg Zn (first phase) were fed the nonzinc-supplemented diet (second phase). Broken-line analysis showed that the optimum dietary zinc supplementation ((ZnSO4H2O)-H-.) to Nile tilapia juveniles, using weight gain and bone zinc saturation as response criteria, was 44.50 and 79.51 mg/kg Zn, respectively. When challenged by a zinc-deficient diet, tilapia mobilized stored bone zinc to preserve its zinc status. By considering that bone zinc saturation is a more accurate response criterion than weight gain, it was concluded that the optimum dietary zinc supplementation ((ZnSO4H2O)-H-.) in vegetable-based diets to Nile tilapia juveniles is 79.51 mg/kg Zn. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. This study was undertaken to evaluate the impact of short-term cadmium exposure on metabolic patterns of the freshwater fish Oreochromis niloticus. The fish were exposed to 320, 640, 1280 and 2560 mug/l sublethal concentrations of Cd++ (CdCl2) in water for 7 days. The specific activities of the enzymes phosphofructo kinase (PFK-E.C.2.7.1.11.), lactate dehydrogenase (LDH-E.C.1.1.1.27.) and creatine kinase (CK-E.C.2.7.3.2.) were decreased in white muscle after cadmium treatments, indicating decreases in the capacity of glycolysis in this tissue. Cadmium exposure induced increased glucose concentration in white muscle of fish. on the other hand, cadmium exposure at sublethal concentrations increased phosphofructo kinase and LDH in red muscle of fish. Cadmium significantly decreased total protein concentrations in liver and white muscle regardless of tissue glycogen levels. The data suggest that cadmium acts as a stressor, leading to metabolic alterations similar to those observed in starvation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Genetic analyses of sex determination have identified sex chromosomes in many teleost fish species. However, there are several cases for which sex ratios do not fit perfectly with the expectations of heterogametic systems, suggesting the influence of either minor sex determining genes or environmental influences on the process of sex differentiation. The frequent absence of sex chromosome markers makes the identification of minor sex-determining genes very difficult. It is easier to test first the hypothesis of environmental sex determination (ESD) by studying the temperature effect, since temperature-dependent sex determination has been demonstrated to occur in several vertebrate groups including 1 fish species. To contribute to a better understanding of fish sex determination, we have tested the effects of high temperatures on sex ratios of Oreochromis niloticus, and have attempted to isolate sex chromosome molecular markers in Leporinus elongatus. Treatments of O. niloticus fry at 36 degrees C applied for 10 days and more, and starting 1 week after fertilization markedly increased the proportion of males, and progeny-testing these males confirmed that some of them are sex-reversed genetic females. Two non-coding sequences of L. elongatus Z and W chromosomes were cloned by genomic subtraction. They cross-hybridized with the genome of a close species without providing sex-specific patterns. A collection of L. elongates individuals was subjected to gonadal and chromosomal sexing, and DNA hybridization with both sequences. These analyses revealed 3 individuals having atypical W chromosomes. Interestingly, 2 of these were males having a ZW karyotype. We assume that these atypical sex chromosome arise by exchanges between Z and W chromosomes, and that a transition between female and male heterogamety is underway in this species.
SYNAPTONEMAL COMPLEX-ANALYSIS IN SPERMATOCYTES OF TILAPIA, OREOCHROMIS-NILOTICUS (PISCES, CICHLIDAE)
Resumo:
Some adaptations of the synaptonemal complex (SC) whole-mounting technique first used in plants permitted its application to meiotic studies in tilapia, Oreochromis niloticus. Direct observation of the chromosome pairing process and bivalent structure during the meiotic prophase of this fish species by light and electron microscopy permitted the analysis of SCs in autosomes and the possible identification of sex chromosomes. The analysis of SCs in spermatocytes of 0. niloticus revealed that all 22 bivalent chromosomes completely paired, except for the occurrence of a size heteromorphism in the terminal region of the largest bivalent associated with the presence of an incompletely paired segment during the synapsis process, which may be the cytological visualization of an XX/XY sex chromosome system in this species.
Resumo:
Atrazine is the triazinic herbicide most found in the rural aquatic environments due to its extensive use and its stability in such places. The mutagenicity and the genotoxicity of different concentrations of the Atrazine herbicide were determinated by the micronucleus test and the comet assay, using Oreochromis niloticus as test-system. The tested concentrations of Atrazine herbicide were 6.25, 12.5 and 25 mu g/L, both for the micronuclei test and for the comet assay. The results showed a significant rate of micronuclei and nuclear abnormalities for all the tested concentrations of Atrazine herbicide. For the comet assay, we also observed results significantly different from the control in 6.25, 12.5 and 25 mu g/L concentrations. Due to these results, we could infer that such herbicide may be dangerous to the lives of those organisms exposed to it. (c) 2007 Elsevier B.V. All rights reserved.
Synaptonemal complex analysis in spermatocytes of tilapia, Oreochromis niloticus (Pisces, Cichlidae)
Resumo:
A 90-day feeding experiment was conducted with sex reversed Nile tilapia (Oreochromis niloticus) fingerlings fed purified or practical diets supplemented with different zinc sources to evaluate fish growth performance and zinc and iron retention in fish bones, fillets, liver, skin and eyes. The relative bioavailability value (RBV) of zinc in the supplemental sources tested was also calculated. Fish were fed with isonitrogenous and isoenergetic purified or practical diets supplemented with 150 mg Zn kg -1, as zinc sulphate monohydrate (ZnSO 4), zinc oxide (ZnO) or zinc amino acid complex (Zn-AA). The feeding trial was conducted in 30, 50 L aquaria where four 0.66 ± 0.01 g (mean ± SD) fingerlings were initially stocked. No significant differences were observed for any growth performance variables (P > 0.05). In practical diets, only ZnSO 4 and ZnO presented bone zinc retention similar to that for the standard zinc source. Zinc concentration in the bone of fish fed practical diet supplemented with Zn-AA (171 ± 3.62 μg g -1) was significantly lower than that verified for the practical diets supplemented with the standard zinc source (200 ± 17.7 μg g -1) or with ZnSO 4 (204 ± 19.9 μg g -1). Assuming the concentration of zinc in bones as the response criterion, the supplemental zinc RBV from ZnSO 4 (105%) was higher than the RBV for Zn-AA (95.1%) or ZnO (94.9%). Iron concentration in the bones of animals fed the non-zinc-supplemented purified diet was significantly higher than that observed for purified diet supplemented with Zn-AA (P < 0,05). The results of the present work allowed us to conclude that ZnSO 4 in relation to ZnO or Zn-AA was the supplemental zinc source with higher zinc bioavailability to Nile tilapia. © 2005 Blackwell Publishing Ltd.