39 resultados para Optimization algorithms
Resumo:
This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The development of new technologies that use peer-to-peer networks grows every day, with the object to supply the need of sharing information, resources and services of databases around the world. Among them are the peer-to-peer databases that take advantage of peer-to-peer networks to manage distributed knowledge bases, allowing the sharing of information semantically related but syntactically heterogeneous. However, it is a challenge to ensure the efficient search for information without compromising the autonomy of each node and network flexibility, given the structural characteristics of these networks. On the other hand, some studies propose the use of ontology semantics by assigning standardized categorization of information. The main original contribution of this work is the approach of this problem with a proposal for optimization of queries supported by the Ant Colony algorithm and classification though ontologies. The results show that this strategy enables the semantic support to the searches in peer-to-peer databases, aiming to expand the results without compromising network performance. © 2011 IEEE.
Resumo:
In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Evolutionary algorithms have been widely used for Artificial Neural Networks (ANN) training, being the idea to update the neurons' weights using social dynamics of living organisms in order to decrease the classification error. In this paper, we have introduced Social-Spider Optimization to improve the training phase of ANN with Multilayer perceptrons, and we validated the proposed approach in the context of Parkinson's Disease recognition. The experimental section has been carried out against with five other well-known meta-heuristics techniques, and it has shown SSO can be a suitable approach for ANN-MLP training step.
Resumo:
The transmission system is responsible for connecting the power generators to consumers safely and reliably, its constant expansion is necessary to transport increasing amounts of electricity. In order to help the power systems engineers, an optimization tool for optimize the expansion of the transmission system was developed using the modeling method of the linearized load flow and genetic. This tool was designed to simulate the impact of different scenarios on the cost of transmission expansion. The proposed tool was used to simulate the effects of the presence of distributed generation in the expansion of a fictitious transmission system, where it was found a clear downward trend in investment required for the expansion of the transmission system taking account of increasing levels of distributed generation.
Resumo:
Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.