89 resultados para Optically stimulated luminescence
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A simple calorimetric method was employed to study the kinetics of the hydrolysis of the solventless TMOS-water mixtures, under ultrasound stimulation, as a function of the concentration of oxalic acid. The reaction rates were obtained, in relative units, from the measured thermal peak of the reaction as a non-separated function of both the sonication time and the instantaneous temperature of the medium. For concentrations of oxalic acid below 0.01 M, polycondensation reaction starts before complete hydrolysis. For concentrations of oxalic acid above 0.01 M, hydrolysis is complete and, in addition, the inverse of the time, as measured from the starting of ultrasound action until the maximum hydrolysis heat release, was found to be a reasonable relative measure of the average hydrolysis rate constant. The average hydrolysis rate constant was found to be proportional to the square root of the molar concentration of the oxalic acid. This result is in agreement with the literature if we assume small dissociation degree for the catalyst in such a solventless alkoxyde-water medium.
Resumo:
Blue luminescence emission around 480 nm through cooperative upconversion from pairs of Yb3+ ions implanted into 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses and excited by a cw laser at 1.064 mum is demonstrated. Cooperative luminescence emission enhancement owing to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium ions is also observed. The experimental results revealed a fourfold enhancement in the cooperative luminescence emission when the sample was heated in the temperature range of 20 degreesC-260 degreesC. The thermally induced enhancement is assigned to the effective absorption cross-section for the ytterbium ions which is an increasing function of the medium temperature. (C) 2002 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report 18 new laser lines from (CH3OH)-C-13 generated in an optically pumped far-infrared laser; the laser lines are in the range of 54.2-420 mu m and are all characterized in wavelength, polarization relative to the pumping CO2 radiation, and pump offset relative to the CO2 center frequency, the frequencies of seven of these new lines along with 10 previously reported lines were measured by an accurate heterodyne technique, mixing them in a metal-insulator-metal (MIM) point contact diode, with another laser line of known frequency.
Resumo:
Fourier transform and IR optoacoustic absorption data of (CD3OH)-C-13 were used to search for new FIR laser lines. We have used a waveguide CO2 laser of 300 MHz tunability as the optical pumping source. We report the observation and characterization of 13 new lines. Three of these lines are associated with absorbing transitions appertaining to the weak (CD3)-C-13 asymmetric bending mode.
Photo luminescence: A probe for short, medium and long-range self-organization order in ZrTiO4 oxide
Resumo:
Photoluminescent disordered ZrTiO4 powders were obtained by the polymeric precursor soft-chemical method. This oxide system (ordered and disordered) was characterized by photoluminescence, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry and UV vis absorption experiments. The UV absorption tail formation in the disordered oxides was related to the diminution of optical band gap. In the disordered phase, this oxide displayed broad band photoluminescence caused by change in coordination number of titanium and zirconium with oxygen atoms. The gap decreased from 3.09 eV in crystalline oxide to 2.16 eV in disordered oxide. The crystalline oxide presented an orthorhombic alpha-PbO2-type structure in which Zr4+ and Ti4+ were randomly distributed in octahedral coordination polyhedra with oxygen atoms. The amorphous-crystalline transition occurred at almost 700 degrees C, at which point the photoluminescence vanished. The Raman peak at close to 80-200 cm(-1) indicated the presence of locally ordered Ti-O-n and Zr-O-n polyhedra in disordered photoluminescent oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Results on the luminescence properties of Eu3+ in Ba2SiO4 sites and the presence of Eu3+-O2- associates are reported. The Ba2SiO4:Eu3+ emission spectra showed two groups of transitions that might be assigned to the D-5(0) --> F-7(0) one. In each group at least two lines were observed. This is possibly related to the different emission centers, attributed to Eu3+ occupying the Ba2+ sites, and to Eu3+-O2- associates in interstices. Excitation spectra presented two CT bands at 270 and 340 nm related to each emission center.
Resumo:
This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD, (CH3OH)-C-13, (CD3OH)-C-13, (CD3OD)-C-13, (CH3OH)-O-18, CH2DOH, CHD2OH and CH2DOD.
Resumo:
Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize the photoluminescence properties of SrTiO3 perovskite thin films synthesized through a soft chemical processing. Only the amorphous samples present photoluminescence at room temperature. From the theoretical side, first principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (ST-c) and an asymmetric (ST-a) model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of ST is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystallized boehmite gamma-AlOOH center dot nH(2)O had been synthesized by spray-drying (SD) of a solution of aluminium tri-sec-butoxide peptized by nitric acid. The sub-micronic spherical particles obtained had an average diameter of 500 nm and were built of 100 nm or less platelet-like sub-particles. The average crystallite size calculated from XRD was 1.6 nm following the b axis (i.e. one unit cell) and 3-4 nm perpendicular to b. As a result of the nanometric sizes of crystallites, there was a large surface free for water adsorption and it was found to be n = 1.18 +/- 0.24H(2)O per AlOOH. The SD spheres spontaneously dispersed in water at room temperature and formed stable-over months-suspensions with nanometre-size particles (25-85 nm). Luminescent europium-doped nanocrystallized boehmites AlOOH: Eu (Al0.98Eu0.02OOH center dot nH(2)O) were synthesized the same way by SD and demonstrated the same crystallization properties and morphologies as the undoped powders. It is inferred from the Eu3+ luminescence spectroscopy that partly hydrated europium species are immobilized on the boehmite nanocrystals where they are directly bonded to alpha(OH) groups of the AlOOH surface. The europium coordination is schematically written [Eu3+(OH)(alpha)(H2O)(7-alpha/2)]. The europium-doped boehmite from SD spontaneously dispersed in water: the luminescence spectroscopy proves that most of the Eu3+ ions were detached from the NPs during water dispersion. The AlOOH: Eu nanoparticles were modified by the amine acid asparagine (ASN). The modification aimed to render the NPs compatible for further bio-functionalization. After surface modification, the NPs easily dispersed in water; the luminescence spectra after dispersion prove that the Eu3+ ions were held at the boehmite surface.
Resumo:
This paper aims to describe the synthesis of the semi-crystalline and crystalline powder of lanthanum doped with zirconium titanate (65/35), LZT through Pechini method. The analysis done by Raman demonstrated that semi-crystalline phase at 550 degrees C and crystalline phase after 600 degrees C were formed. The XRD pattern shows the ZrTiO4 phase formation demonstrating that La substitutions into the lattice take place. The calcined powder at different temperatures shows a semi-crystalline phase presenting photoluminescence effect when processed at low temperatures. From 300 to 400 degrees C a broadband is observed at 563 nm and 568 nm, respectively. Defects creation such as: Zr3+ center dot Vo(center dot center dot) and Ti3+ - V-O(center dot center dot), Zr and Ti replaced by La with vacancy formation, impurities and imperfections contributed to the photoluminescence effect. However, the main emission is due to a reverse Ti4+ -> O2- or/and Zr4+ -> O2- transition that occur within a regular titanate or zirconate eight-fold coordination [BO8-delta], B = Zr4+, Ti4+. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an approximate universality displayed by thermally stimulated depolarization currents ruled by stretched exponential relaxations when properly re-scaled. A visually perfect universality occurs especially when the energy and the heating rate are varied. It becomes somewhat poorer when the frequency factor or the stretched exponent changes. Empirical relations between the half widths and other pertinent parameters are given.