77 resultados para Occupational light vehicle use
Resumo:
The purpose of this study was to compare the pH and calcium ion liberation after use of calcium hydroxide pastes with different paste vehicles in human or bovine teeth. Ninety-two single-rooted human and bovine roots were used. The roots were instrumented and an external cavity preparation was performed. The roots were divided in to human and bovine groups. Each group was subdivided into four subgroups (SB) according to the vehicle:SB1, detergent; SB2, saline; SB3, polyethylenoglycol + camphorated paramonochlorophenol (Calen PMCC) and SB4, polyethylenoglycol + furacyn paramonochlorophenol (FPMC). Specimens were immersed into saline solution at 37 degrees C and after 7 and 14 days pH and calcium ion measurements were made. The results were analyzed by ANOVA and Tukey tests (P < 0.05). There was no statistical difference between bovine and human teeth in the pH analysis (P < 0.05), but bovine teeth provided larger calcium ion liberation than human teeth. Calen PMCC was statistically more effective for pH increase and calcium ion liberation in all analyses, followed by FPMC and saline. Detergent showed the lowest pH alterations and calcium ion liberation. The period of 14 days showed more calcium ionic liberation than the 7-day period.
Resumo:
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 +/- 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Drug delivery systems involving the use of polymers are widely studied and discovery of biocompatible polymers has become the focus of research in this area. Psoralen loaded poly(DL-lactide-co-glycolide) (PLGA) microspheres to be used in PUVA therapy (psoralen and UVA irradiation (ultraviolet A, 320-400 nm) of psoriasis were identified in paraffin sections by histological analysis. The psoralen loaded PLGA microspheres were prepared using the solvent evaporation technique. They were spherical and possessed an external smooth surface as observed by scanning electron microscopy (SEM) analysis. This study describes a modification in the routine preparation of microsphere samples for examination by light microscopy. The changes involved fixative agents and/or stains allowing the identification of microspheres containing a non-fluorescent material. The preservation and identification of microspheres in tissues for histological processing in paraffin was greatly improved by these modifications as proven by our results. (c) 2007 Elsevicr Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We have developed a biodegradable composite scaffold for bone tissue engineering applications with a pore size and interconnecting macroporosity similar to those of human trabecular bone. The scaffold is fabricated by a process of particle leaching and phase inversion from poly(lactide-co-glycolide) (PLGA) and two calcium phosphate (CaP) phases both of which are resorbable by osteoclasts; the first a particulate within the polymer structure and the second a thin ubiquitous coating. The 3-5 mu m thick osteoconductive surface CaP abrogates the putative foreign body giant cell response to the underlying polymer, while the internal CaP phase provides dimensional stability in an otherwise highly compliant structure. The scaffold may be used as a biomaterial alone, as a carrier for cells or a three-phase drug delivery device. Due to the highly interconnected macroporosity ranging from 81% to 91%, with macropores of 0.8 similar to 1.8 mm, and an ability to wick up blood, the scaffold acts as both a clot-retention device and an osteoconductive support for host bone growth. As a cell delivery vehicle, the scaffold can be first seeded with human mesenchymal cells which can then contribute to bone formation in orthotopic implantation sites, as we show in immune-compromised animal hosts. We have also employed this scaffold in both lithomorph and particulate forms in human patients to maintain alveolar bone height following tooth extraction, and augment alveolar bone height through standard sinus lift approaches. We provide a clinical case report of both of these applications; and we show that the scaffold served to regenerate sufficient bone tissue in the wound site to provide a sound foundation for dental implant placement. At the time of writing, such implants have been in occlusal function for periods of up to 3 years in sites regenerated through the use of the scaffold.
Resumo:
The parametric region in the plane defined by the ratios of the energies of the subsystems and the three-body ground state, in which Efimov states can exist, is determined. We use a renormalizable model that guarantees the general validity of our results in the context of short-range interactions. The experimental data for one-and two-neutron separation energies, implies that among the halo nuclei candidates, only 20C has a possible Efimov state, with an estimated energy less than 14 KeV below the scattering threshold.
Resumo:
The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.
Resumo:
It is shown that three-body non-Borromean halo nuclei like 12Be, 18C, 20C, considered as neutron-neutron-core systems, have p-wave virtual states with energy of about 1.7 times the corresponding neutron-core binding energy. We use a renormalizable model that guarantees the general validity of our results in the context of short range interactions.
Resumo:
Purpose: To evaluate the influence of three different adhesives, each used as an intermediary layer, on microleakage of sealants applied under condition of salivary contamination. Materials and Methods: Six different experimental conditions were compared, 3 with adhesives and 3 without. After prophylaxis and acid etching of enamel, salivary contamination was placed for 10 s. In Group SC the sealant was applied after saliva without bonding agent and then light-cured. In Group SCA, after saliva, the surface was air dried, and then the sealant was applied and cured. In Groups ScB, SB and PB, a bonding agent (Scotchbond Dual Cure/3M, Single Bond/3M and Prime & Bond 2.1/Dentsply, respectively) was applied after the saliva and prior to the sealant application and curing. After storage in distilled water at 37°C for 24 hrs, the teeth were submitted to 500 thermal cycles (5°C and 55°C), and silver nitrate was used as a leakage tracer. Leakage data were collected on cross sections as percentage of total enamel-sealant interface length. Representative samples were evaluated under SEM. Results: Sealants placed on contaminated enamel with no bonding agent showed extensive microleakage (94.27% in SC; 42.65% in SCA). The SEM revealed gaps as wide as 20 μm in areas where silver nitrate leakage could be visualized. In contrast, all bonding agent groups showed leakage less than 6.9%. Placement of sealant with a dentin-bonding agent on contaminated enamel significantly reduced microleakage (P< 0.0001). The use of a bonding agent as an intermediary layer between enamel and sealant significantly reduced saliva's effect on sealant microleakage.
Resumo:
The present work aims at to approach considerations of trucks suspension design. The proposal of the work consists of discussing the aspects related to the acting of the suspension and of factors that interact with the system through representative models of the dynamic behaviour of the vehicle ride when operating in total load and/or empty conditions. The importance of this work is to revise some procedures of suspension study in the sense of adapting them to the Brazilian reality, tends in view the importance of the design characterisation and adaptation to the typical roads of Brazil. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
The aim of the present work is to analyze the histological changes on hamster buccal mucosa caused by the topical use of 7,12-dimethylbenzanthracene (DMBA) and exposition to a 220 μJ/pulse nitrogen laser light (@ 337 nm) at an average power of 2,3 mW. Twenty-one hamsters divided into two experimental groups were treated six times with DMBA. One hamster was kept as control. Group I was composed by ten hamsters and was submitted only to DMBA. Group II, also with ten hamsters, received the same treatment as group I and was exposed to the laser radiation. The time duration of each irradiation section was 10 seconds. All the treatment happened in alternated days. The histological analysis took place twice, after the end of the treatment and after sixty days. Both experimental groups presented dilatation of vessels, thickening of the epithelial tissue and the presence of inflammatory infiltrates. The preliminary results indicates that in group II the number of dilated vessels and its new area are much more significant than in group I.
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance. © Mary Ann Liebert, Inc.
Resumo:
In the light-cone gauge choice for Abelian and non-Abelian gauge fields, the vector boson propagator carries in it an additional spurious or unphysical pole intrinsic to the choice requiring a careful mathematical treatment. Research in this field over the years has shown us that mathematical consistency only is not enough to guarantee physically meaningful results. Whatever the prescription invoked to handle such an object, it has to preserve causality in the process. On the other hand, the covariantization technique is a well-suited one to tackle gauge-dependent poles in the Feynman integrals, dispensing the use of ad hoc prescriptions. In this work we show that the covariantization technique in the light-cone gauge is a direct consequence of the canonical quantization of the theory. © World Scientific Publishing Company.