62 resultados para Nucleotide biosynthesis
Resumo:
Leprosy is a chronic infectious disease caused by Mycobacterium leprae, a low virulence mycobacterium, and the outcome of disease is dependent on the host genetics for either susceptibility per se or severity. The IFNG gene codes for interferon-gamma (IFN-gamma), a cytokine that plays a key role in host defense against intracellular pathogens. Indeed, single nucleotide polymorphisms (SNPs) in IFNG have been evaluated in several genetic epidemiological studies, and the SNP +874T > A, the +874T allele, more specifically, has been associated with protection against infectious diseases, especially tuberculosis. Here, we evaluated the association of the IFNG locus with leprosy enrolling 2,125 Brazilian subjects. First, we conducted a case-control study with subjects recruited from the state of So Paulo, using the +874 T > A (rs2430561), +2109 A > G (rs1861494) and rs2069727 SNPs. Then, a second study including 1,370 individuals from Rio de Janeiro was conducted. Results of the case-control studies have shown a protective effect for +874T carriers (OR(adjusted) = 0.75; p = 0.005 for both studies combined), which was corroborated when these studies were compared with literature data. No association was found between the SNP +874T > A and the quantitative Mitsuda response. Nevertheless, the spontaneous IFN-gamma release by peripheral blood mononuclear cells was higher among +874T carriers. The results shown here along with a previously reported meta-analysis of tuberculosis studies indicate that the SNP +874T > A plays a role in resistance to mycobacterial diseases.
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
The biosynthesis of chondroitinase and hyaluronidase by different isolates of Paracoccidioides brasiliensis was investigated in 20 strains isolated from patients (17 strains), a penguin (Pygocelis adeliae, one strain), an armadillo (Dasypus novemcinctus, one strain) and the environment (dog food, one strain). All the P. brasiliensis isolates studied had the ability to produce chondroitinase and hyaluronidase, although differences in colony morphology and enzyme production were detected among them. These results suggest that further investigations should be carried out in the clinical field in order to clarify the potential role of P. brasiliensis enzyme production in the pathogenesis of paracoccidioidomycosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this research was to investigate the potential of xylanase production by Aspergillus japonicus and to determine the effects of cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature for enzyme and biomass production was 25°C; however, the best carbon source for growth (determined by the Bioscreen C) did not turn out to be a good inducer of xylanase production. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran (without the addition of any other carbon source) using a spore concentration of 1 × 107 spores/mL (25°C, pH 5.0, 120 h). A. japonicus is a good xylanase producer under the conditions presented in these assays. © 2006 Academic Journals.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
Resumo:
Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.
Resumo:
Context: Presence of endothelial nitric oxide synthase (eNOS) gene polymorphism has been associated with cardiovascular disease (CVD) whereas exercise training (EX) promotes beneficial effects on CVD which is related to increased nitric oxide levels (NO). Objective: To evaluate if women with eNOS gene polymorphism at position-G894T would be less responsive to EX than those who did not carry T allele. Methods: Women were trained 3 days/week, 40 minutes session during 6 months. Cardio-biochemical parameters and genetic analysis were performed in a double-blind fashion. Results: Plasma NOx - levels were similar in both groups at baseline (GG genotype: 18.44±3.28 μM) and (GT + TT genotype: 17.19±2.43 μM) and after EX (GG: 29.20±4.33 and GT+TT: 27.38±3.12 μM). A decrease in blood pressure was also observed in both groups. Discussion and conclusion: The presence of eNOS polymorphism does not affect the beneficial effects of EX in women. © 2011 Informa UK, Ltd.
Resumo:
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.
Resumo:
Abamectin (ABA), which belongs to the family of avermectins, is used as a parasiticide; however, ABA poisoning can impair liver function. In a previous study using isolated rat liver mitochondria, we observed that ABA inhibited the activity of adenine nucleotide translocator and FoF1-ATPase. The aim of this study was to characterize the mechanism of ABA toxicity in isolated rat hepatocytes and to evaluate whether this effect is dependent on its metabolism. The toxicity of ABA was assessed by monitoring oxygen consumption and mitochondrial membrane potential, intracellular ATP concentration, cell viability, intracellular Ca2+ homeostasis, release of cytochrome c, caspase 3 activity and necrotic cell death. ABA reduces cellular respiration in cells energized with glutamate and malate or succinate. The hepatocytes that were previously incubated with proadifen, a cytochrome P450 inhibitor, are more sensitive to the compound as observed by a rapid decrease in the mitochondrial membrane potential accompanied by reductions in ATP concentration and cell viability and a disruption of intracellular Ca2+ homeostasis followed by necrosis. Our results indicate that ABA biotransformation reduces its toxicity, and its toxic action is related to the inhibition of mitochondrial activity, which leads to decreased synthesis of ATP followed by cell death. © 2012 Elsevier Ltd.
Resumo:
There are few studies about the distribution of natural molecular variants of low-risk HPVs. Our aim was to evaluate the E6 early gene variability among HPV-6 and HPV-11 isolates detected in recurrent respiratory papillomatosis (RRP) samples obtained in a cohort of Brazilian patients. We also performed a phylogenetic analysis in order to compare nucleotide sequences identified in our study with previously reported isolates from different anatomic sites (laryngeal papillomas, genital warts, cervical cancer and anal swabs) obtained from other parts of the world to determine the phylogenetic relationships of variants detected in Brazil. The complete coding region of the E6 gene of 25 samples was cloned and sequenced: 18 isolates of HPV-6 (72%) and 7 isolates of HPV-11 (28%). A total of four different HPV-6 genomic variants and two HPV-11 genomic variants was identified. It was not possible to correlate specific variants with disease severity. Phylogenetic trees for both HPV types were constructed enclosing both E6 sequences detected in our study and formerly published sequences. In both phylogenetic trees, the sequences from Brazil did not group together. We could not establish a geographical association between HPV-6 or HPV-11 variants, unlike HPV-16 and HPV-18. © 2013 Elsevier B.V.
Resumo:
The gene responsible for coding the leptin hormone has been associated with productive and reproductive traits in cattle. In dairy cattle, different polymorphisms found in the leptin gene have been associated with several traits of economic interest, such as energy balance, milk yield and composition, live weight, fertility and dry matter consumption. The aim of this study was to detect genetic variability in the leptin gene of buffaloes and to test possible associations with milk yield, fat and protein percentages, age at first calving and first calving interval. Three genotypes (AA, AG and GG) were identified by polymerase chain reaction-restriction fragment length polymorphism, which presented genotypic frequencies of 0.30, 0.54 and 0.16, respectively. The allele frequencies were 0.57 for the A allele and 0.43 for the G allele. No significant effects were found in the present study, but there is an indicative that leptin gene affects lipid metabolism. © 2013 Springer Science+Business Media Dordrecht.